Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 21:52

Từ giả thiết ta có:

\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)

\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)

\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)

Vương Đăng Khoa
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2023 lúc 8:24

Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)

\(\Rightarrow x^5< x^2\)

Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\)\(z< 1\Rightarrow z^7< z^2\)

\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)

\(\Rightarrow x^5+y^6+z^7< 1\)

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

trà sữa trân châu đường...
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 21:21

x^2+y^2=(x+y)^2-2xy

=5^2-2*3

=25-6

=19

x^3+y^3=(x+y)^3-3xy(x+y)

=5^3-3*3*5

=125-9*5

=80

(x-y)^2=(x+y)^2-4xy=5^2-4*3=13

=>\(x-y=\sqrt{13}\)

Tống Cao Sơn
Xem chi tiết
Akai Haruma
27 tháng 4 2023 lúc 18:49

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$4y^2+1\geq 4y$

$\Rightarrow x^2+4y^2+5\geq 4(x+y)$

$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$

Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$

toi la toi toi la toi
Xem chi tiết
Thu Hiền Nguyễn Thị
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:20

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

Lê Ngọc Ánh
18 tháng 10 2021 lúc 19:21

x,y thuộc N ôk

Khách vãng lai đã xóa
Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined