Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$4y^2+1\geq 4y$
$\Rightarrow x^2+4y^2+5\geq 4(x+y)$
$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$4y^2+1\geq 4y$
$\Rightarrow x^2+4y^2+5\geq 4(x+y)$
$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$
cho hai số thực x,y thỏa mãn điều kiện 0<x<=1; 0<y<=1 và x+y=4xy. Tìm GTLN, GTNN của biểu thức P=x^2+y^2-xy
cho x,y là số thực dương thỏa mãn \(\sqrt{xy}\left(x-y\right)=x+y\). Tìm min \(P=x+y\)
cho các số thực dương x,y thỏa mãn \(xy\ge x+y^2\)
Tìm min của F=x+3y
Mn giúp em với ạ
Cho các số thực dương x,y thỏa mãn điều kiện căn(xy)×(x-y)=(x+y)
Tìm Min x+y
Cho x,y là các số thực dương thỏa mãn điều kiện x+y+xy=15. Tìm min của \(P=x^2+y^2\)
Tìm Min và Max của A=x^2+y^2 biết x,y là 2 số thực thỏa mãn x^2+y^2-xy=4
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\) +4xy
với hai số dương x, y thỏa mãn x>=2y tìm min M=(x^2+y^2)/xy.