Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Qynh Nqa
Xem chi tiết
Cherry Trần
Xem chi tiết
Mới vô
29 tháng 10 2017 lúc 17:39

\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)

\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)

An Nguyễn Bá
29 tháng 10 2017 lúc 17:39

b) \(2005^3+125\)

\(=2005^3+5^3\)

\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010

Vậy \(2005^3+125\) chia hết cho 2010

An Nguyễn Bá
29 tháng 10 2017 lúc 17:45

c) \(x^6-1\)

\(=\left(x^3\right)^2-1^2\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\) \(⋮\) \(\left(x-1\right)\)\(\left(x+1\right)\)

Vậy \(x^6-1\) chia hết cho \(\left(x-1\right)\)\(\left(x+1\right)\)

Trần Thị Thanh Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 22:11

Câu 1:

=>\(x^3-2x^2+x-2-3⋮x-2\)

=>\(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

 

Trần Quý
Xem chi tiết
Lãnh Hy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2022 lúc 11:08

Bài 1:

a: \(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)

\(=\dfrac{-x-1+2x-2-x+5}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\dfrac{2}{1-2x}\)

b: Để A>0 thì 1-2x>0

=>2x<1

=>x<1/2

 

nguyen thi thao
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
vũ nhung
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 0:12

\(\lim\limits_{x\rightarrow0}\dfrac{2\left(\sqrt{3x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\dfrac{6x}{x\left(\sqrt{3x+1}+1\right)}=\lim\limits_{x\rightarrow0}\dfrac{6}{\sqrt{3x+1}+1}=3\)

\(\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x-2\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x-2\right)=-3\)

\(\Rightarrow I-J=6\)

Trần Tiến Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2020 lúc 15:49

Câu 1:

Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)

\(=x^4+2x^2+1\)

\(=\left(x^2+1\right)^2\ge1\forall x\)

hay M(x) vô nghiệm(đpcm)

Câu 2:

Ta có: A(0)=5

\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)

\(\Leftrightarrow m=5\)

Ta có: A(1)=-2

\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)

\(\Leftrightarrow5+n=-2\)

hay n=-2-5=-7

Ta có: A(2)=7

\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)

\(\Leftrightarrow-9+2p=7\)

\(\Leftrightarrow2p=16\)

hay p=8

Vậy: Đa thức A(x) là 5-7x+8x(x-1)

\(=5-7x+8x^2-8x\)

\(=8x^2-15x+5\)

Trung Vũ
Xem chi tiết
Trần Thiên Kim
17 tháng 2 2017 lúc 11:32

\(x+\frac{1}{x}=a\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)

\(\Leftrightarrow x^2+2+\frac{1}{x^2}=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)

=> Đáp án B

Nguyễn Võ Văn Hùng
17 tháng 2 2017 lúc 14:26

Ta có : \(x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=a^2-2\)

Vậy giá trị biểu thức tính theo a là: a^2-2