Tìm x:
a. x : 4 = 7
Tìm x:
a)x+3/4=5/3
b)x-2/3=7/2
a) x + \(\dfrac{3}{4}\) = \(\dfrac{5}{3}\)
x = \(\dfrac{5}{3}\) - \(\dfrac{3}{4}\)
x = \(\dfrac{20}{12}\) - \(\dfrac{9}{12}\)
x = \(\dfrac{11}{12}\)
b) x - \(\dfrac{2}{3}\) = \(\dfrac{7}{2}\)
x = \(\dfrac{7}{2}\) + \(\dfrac{2}{3}\)
x = \(\dfrac{21}{6}\) + \(\dfrac{4}{6}\)
x = \(\dfrac{25}{6}\)
Tìm x:
a, 4.( x + 41 ) = 7
b, 4. ( x-3 ) = 7 mũ 2 - 1 mũ 10
a. 4.(x+41) = 7
x + 41 = 7 : 4 = 1,75
x = 1,75 - 41 = -39,25
b. 4.(x-3) = 72 - 110 = 49 - 1 = 48
x - 3 = 48 : 4 = 12
x = 12 + 3 = 15
Tìm x:
a, 4.( x + 41 ) = 400
b, 4. ( x-3 ) = 7 mũ 2 - 1 mũ 10
a) \(4\left(x+41\right)=400\)
\(\Rightarrow x+41=400:4\)
\(\Rightarrow x+41=100\)
\(\Rightarrow x=100-41\)
\(\Rightarrow x=59\)
a/ \(4.\left(x+41\right)=400\)
\(x+41=\dfrac{400}{4}=100\)
\(\Rightarrow x=59\)
b/ \(4.\left(x-3\right)=7^2-1^{10}\)
\(4.\left(x-3\right)=49-1\)
\(4.\left(x-3\right)=48\)
\(x-3=\dfrac{48}{3}=16\)
\(\Rightarrow x=19\)
#AEZn8
a ) 4 . ( x + 41 ) = 400
x + 41 = 400 : 4
x + 41 = 100
x = 100 - 41
x = 59
b ) 4 . ( x - 3 ) = 72- 110
4 . ( x - 3 ) = 49 - 1
4 . ( x - 3 ) = 48
x - 3 = 48 : 4
x - 3 = 12
x = 12 + 3
x = 15
Tìm x:
a) (x + 5)2 - x(x - 4) = 55
b) x(x - 7) - 3x + 21 = 0
a: \(\Leftrightarrow x^2+10x+25-x^2+4x=55\)
=>14x=30
hay x=15/7
b: \(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\)
hay \(x\in\left\{7;3\right\}\)
Tìm x:
a)x.(x+7)-(x-2).(x+3)=0
b)(x+2)2-(x2-4)=0
a: \(x\left(x+7\right)-\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+7x-x^2-x+6=0\)
hay x=-1
b: Ta có: \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
b. (x + 2)2 - x2 + 4 = 0
<=> (x + 2 - x)(x + 2 + x) + 4 = 0
<=> 2(2 + 2x) + 4 = 0
<=> 4(1 + x) + 4 = 0
<=> 4(1 + x) = -4
<=> 1 + x = -1
<=> x = -1 - 1
<=> x = -2
\(a,\) \(x\left(x+7\right)-\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow x^2+7x-x^2-3x+2x+6\\ \Leftrightarrow6x=0\\ \Leftrightarrow x=0\)
\(Vậy...\)
\(b,\) \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4=0\\ \Leftrightarrow4x+8=0\\ \Leftrightarrow x=-2\)
Tìm x:
a. x + 4/7 = 38/21
b. x - 1/3 = 7/45 : 2/15
Giải chi tiết giúp mik!
a.\(x+\dfrac{4}{7}=\dfrac{38}{21}\)
\(x=\dfrac{38}{21}-\dfrac{4}{7}\)
\(x=\dfrac{38}{21}-\dfrac{12}{21}=\dfrac{26}{21}\)
b.\(x-\dfrac{1}{3}=\dfrac{7}{45}:\dfrac{2}{15}\)
\(x-\dfrac{1}{3}=\dfrac{7}{6}\)
\(x=\dfrac{7}{6}+\dfrac{1}{3}\)
\(x=\dfrac{7}{6}+\dfrac{2}{6}=\dfrac{9}{6}\)
x = 38/21 - 4/7
x = 26/21
x - 1/3 = 7/6
x = 7/6 + 1/3
x = 3/2
Tìm x:
a)(3x+5).(7-2x)+6x.(x+4)=0
b)x3-25x=0
a) \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow35x=-35\Leftrightarrow x=-1\)
b) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a: Ta có: \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow x=1\)
b: Ta có: \(x^3-25x=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a. (3x + 5)(7 - 2x) + 6x(x + 4) = 0
<=> 21x - 6x2 + 35 - 10x + 6x2 + 24x = 0
<=> -6x2 + 6x2 + 21x - 10x + 24x = -35
<=> 35x = -35
<=> x = \(\dfrac{-35}{35}=-1\)
b. x3 - 25x = 0
<=> x(x2 - 52)
<=> x(x + 5)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
Tìm X:
a)(x-4)(x+4)=9
b)x2-4x+4-(5x-2)2=0
c)4x2+4+1-x2-10x-25=0
d)(x2+x+7)(x2+x-7)=(x2+x)2-7x
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
Tìm x:
a) \(x\) + \(\dfrac{-3}{7}=\dfrac{4}{7}\).
b) \(\dfrac{1}{2}x-75\%=\dfrac{1}{4}.\)
c) \(\left|x-\dfrac{2}{3}\right|+2,25=\dfrac{3}{4}\).
c) Ta có: \(\left|x-\dfrac{2}{3}\right|+2.25=\dfrac{3}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|=\dfrac{3}{4}-\dfrac{9}{4}=\dfrac{-3}{2}\)(vô lý)
Vậy: \(x\in\varnothing\)
a) Ta có: \(x+\dfrac{-3}{7}=\dfrac{4}{7}\)
\(\Leftrightarrow x-\dfrac{3}{7}=\dfrac{4}{7}\)
hay x=1
Vậy: x=1
b) Ta có: \(\dfrac{1}{2}x-75\%=\dfrac{1}{4}\)
\(\Leftrightarrow x\cdot\dfrac{1}{2}=1\)
hay x=2
Vậy: x=2
Tìm x:
a, \(x-\dfrac{1}{4}=\dfrac{7}{2}.\dfrac{-3}{5}\)
b, \(\dfrac{x}{134}=\dfrac{9}{7}.\dfrac{5}{-11}\)
\(a,x-\dfrac{1}{4}=\dfrac{7}{2}.\dfrac{-3}{5}\\ \Rightarrow x-\dfrac{1}{4}=\dfrac{-21}{10}\\ \Rightarrow x=\dfrac{-21}{10}+\dfrac{1}{4}\\ \Rightarrow x=\dfrac{-37}{20}\\ b,\dfrac{x}{134}=\dfrac{9}{7}.\dfrac{5}{-11}\\ \Rightarrow\dfrac{x}{134}=\dfrac{-45}{77}\\ \Rightarrow x=\dfrac{-45}{77}.134\\ \Rightarrow x=\dfrac{-6030}{77}\)
\(x-\dfrac{1}{4}=\dfrac{7}{2}\cdot\dfrac{-3}{5}\)
\(x-\dfrac{1}{4}=\dfrac{-21}{10}\)
\(x=\dfrac{-21}{10}+\dfrac{1}{4}\)
\(x=\dfrac{-37}{20}\)
b ) \(\dfrac{x}{134}=\dfrac{9}{7}\cdot\dfrac{5}{-11}\)
\(\dfrac{x}{134}=\dfrac{9}{7}\cdot\dfrac{-5}{11}\)
\(\dfrac{x}{134}=\dfrac{-45}{77}\)
\(x=\dfrac{-45}{77}\cdot134\)
\(x=-\dfrac{6034}{77}\)