Cho a và b là các số thực khác 0. Giới hạn lim x → 0 1 − a x + 1 sin b x bằng :
A. a 2 b .
B. − 2 a b .
C. 2 a b .
D. − a 2 b .
cho a, b là các số thực khác 0. để giới hạn lim\(x\rightarrow-\infty\) \(\dfrac{\sqrt{x^2-3x}+ax}{bx-1}\) =3 thì A.\(\dfrac{a-1}{b}=3\) B.\(\dfrac{a+1}{b}=3\) C.\(\dfrac{-a-1}{b}=3\) D.\(\dfrac{a-1}{-b}=3\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)
=> A
Câu 1:
Giới hạn lim\(\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\dfrac{a\sqrt{3}}{b}\)(a/b) khi đó tổng a+b bằng?
Câu 2:
Cho a và b là các số thực khác 0. Nếu limx->2 \(\dfrac{x^2+ax+b}{x-2}=6\) thì a+b bầng?
1.
\(\lim\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\lim\dfrac{5\sqrt{3+\dfrac{1}{n}}}{2\left(3+\dfrac{2}{n}\right)}=\dfrac{5\sqrt{3}}{6}\Rightarrow a+b=11\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax+b}{x-2}=6\) khi \(x^2+ax+b=0\) có nghiệm \(x=2\)
\(\Rightarrow4+2a+b=0\Rightarrow b=-2a-4\)
\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax-2a-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)+a\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+a+2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(x+a+2\right)=a+4\Rightarrow a+4=6\Rightarrow a=2\Rightarrow b=-8\)
\(\Rightarrow a+b=-6\)
cho m,n là các số thực khác 0. nếu gioi hạn \(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}=3\) thì m.n=?
Do giới hạn hữu hạn nên \(x^2+mx+n=0\) có nghiệm \(x=1\)
\(\Rightarrow1+m+n=0\Rightarrow n=-m-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx-m-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)+m\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1+m\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x+1+m\right)=m+2\)
\(\Rightarrow m+2=3\Rightarrow m=1\Rightarrow n=-2\)
Cho a và b là các số thực khác 0. Tìm hệ thức liên hệ giữa a và b để giới hạn lim x → 3 − a x 2 − 7 x + 12 − b x 2 − 4 x + 3 là hữu hạn
A. 4 a + b = 0
B. 3 a + b = 0
C. 2 a + b = 0
D. a + b = 0
Cho a và b là các số thực khác 0. Tìm hệ thức liên hệ giữa a và b để giới hạn lim x → 3 − a x 2 − 7 x + 12 − b x 2 − 4 x + 3 là hữu hạn.
A. 4 a + b = 0
B. 3 a + b = 0
C. 2 a + b = 0
D. a + b = 0
Đáp án C
a x 2 − 7 x + 12 − b x 2 − 4 x + 3 = a x − 3 x − 4 − b x − 1 x − 3 = a x − 1 − b x − 4 x − 1 x − 3 x − 4
lim x → 3 − x − 1 x − 3 x − 4 = 0
lim x → 3 − a x 2 − 7 x + 12 − b x 2 − 4 x + 3
hữu hạn thì 2 a + b = 0 . Vậy C đúng
Cho a, b, c là các số thực khác 0. Để giới hạn lim x → − ∞ x 2 − 3 x + a x b x − 1 = 3 thì
A. a − 1 b = 3.
B. a + 1 b = 3.
C. − a − 1 b = 3.
D. a − 1 − b = 3.
Đáp án A
Ta có
lim x → − ∞ x 2 − 3 x + a x b x − 1 = 3 ⇔ lim x → − ∞ = − 1 − 3 x 2 + a b − 1 x = 3 ⇔ − 1 + a b = 3
Cho a, b, c là các số thực khác 0. Để giới hạn lim x → − ∞ x 2 − 3 x + a x b x − 1 = 3 thì
A. a − 1 b = 3.
B. a + 1 b = 3.
C. − a − 1 b = 3.
D. a − 1 - b = 3.
Cho a và b là các số thực khác 0 Biết \(\lim\limits_{x\rightarrow-\infty}\left(ax+b-\sqrt{x^2-6x+2}\right)=5\). Số lớn hơn trong hai số a và b là
A/ 4 B. 3 C.2 D. 1
Giới hạn đã cho hữu hạn nên \(a=-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(b-x\right)^2-\left(x^2-6x+2\right)}{b-x+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(6-2b\right)x+b^2-2}{-x+\sqrt{x^2-6x+2}+b}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6-2b+\dfrac{b^2-2}{x}}{-1-\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}+\dfrac{b}{x}}=\dfrac{6-2b}{-2}=5\)
\(\Rightarrow b=8\)
Cả 4 đáp án đều sai, số lớn hơn là 8
1, Cho hàm số y=f(x) và f'(0)=3. Hỏi giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}\)=?
2, Cho hàm số f(x) có đạo hàm trên R và f'(x)=0 có các nghiệm là 1 và -2. Đặt \(g\left(x\right)=f\left(\sqrt{x^2+4}\right)\), hỏi g'(x)=0 có bao nhiêu nghiệm?
Mọi người giúp mình với ạ, mình cần gấp!! Cảm ơn mọi người rất nhiều!!!
1. Áp dụng quy tắc L'Hopital
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)
2.
\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\)
2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm