Bài 3: Hàm số liên tục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Kiều Anh

Câu 1:

Giới hạn lim\(\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\dfrac{a\sqrt{3}}{b}\)(a/b) khi đó tổng a+b bằng?

Câu 2:

Cho a và b là các số thực khác 0. Nếu limx->2 \(\dfrac{x^2+ax+b}{x-2}=6\) thì a+b bầng?

Nguyễn Việt Lâm
27 tháng 3 2021 lúc 23:36

1.

\(\lim\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\lim\dfrac{5\sqrt{3+\dfrac{1}{n}}}{2\left(3+\dfrac{2}{n}\right)}=\dfrac{5\sqrt{3}}{6}\Rightarrow a+b=11\)

2.

\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax+b}{x-2}=6\) khi \(x^2+ax+b=0\) có nghiệm \(x=2\)

\(\Rightarrow4+2a+b=0\Rightarrow b=-2a-4\)

\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax-2a-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)+a\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+a+2\right)}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\left(x+a+2\right)=a+4\Rightarrow a+4=6\Rightarrow a=2\Rightarrow b=-8\)

\(\Rightarrow a+b=-6\)


Các câu hỏi tương tự
Nguyễn Kiều Anh
Xem chi tiết
Hiếu Chuối
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Hiếu Chuối
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hạnh Hạnh
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
lu nguyễn
Xem chi tiết
Osiris123
Xem chi tiết