Để giới hạn đã cho hữu hạn
\(\Rightarrow\sqrt{x^2+mx-m-3}-x=0\) có nghiệm \(x=4\)
\(\Rightarrow\sqrt{16+4m-m-3}-4=0\)
\(\Rightarrow\sqrt{3m+13}=4\Rightarrow m=1\)
Khi đó:
\(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x^2+x-4}-x}{x^2-5x+4}=\lim\limits_{x\rightarrow4}\dfrac{x-4}{\left(x-1\right)\left(x-4\right)\left(\sqrt{x^2+x-4}+x\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{1}{\left(x-1\right)\left(\sqrt{x^2+x-4}+x\right)}=\dfrac{1}{3\left(\sqrt{4^2+4-4}+4\right)}=\dfrac{1}{24}\)