Bài 3: Hàm số liên tục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sonyeondan Bangtan

Tìm m để \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x^2+mx-m-3}-x}{x^2-5x+4}\) là một số hữu hạn và tìm giới hạn đó. 

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 17:47

Để giới hạn đã cho hữu hạn

\(\Rightarrow\sqrt{x^2+mx-m-3}-x=0\) có nghiệm \(x=4\)

\(\Rightarrow\sqrt{16+4m-m-3}-4=0\)

\(\Rightarrow\sqrt{3m+13}=4\Rightarrow m=1\)

Khi đó:

 \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x^2+x-4}-x}{x^2-5x+4}=\lim\limits_{x\rightarrow4}\dfrac{x-4}{\left(x-1\right)\left(x-4\right)\left(\sqrt{x^2+x-4}+x\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{1}{\left(x-1\right)\left(\sqrt{x^2+x-4}+x\right)}=\dfrac{1}{3\left(\sqrt{4^2+4-4}+4\right)}=\dfrac{1}{24}\)


Các câu hỏi tương tự
lu nguyễn
Xem chi tiết
Hiếu Chuối
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Hạnh
Xem chi tiết
maianh nguyễn
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
nguyen thi be
Xem chi tiết