Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 4 2018 lúc 5:53

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)

⇒ OO’ ⊥ Δ tại trung điểm I của OO’.

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

OO’ ⊥ Δ ⇒ OO’ nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà O(0, 0) ∈ OO’

⇒ Phương trình đường thẳng OO’: x + y = 0.

+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.

+ Trung điểm I của OO’ là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy O’(–2; 2).

b)

+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.

O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.

Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.

Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.

⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà A(2; 0) ∈ O’A

⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.

M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy điểm M cần tìm là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Minh châu Hà
Xem chi tiết
Hồng Phúc
9 tháng 5 2021 lúc 18:03

Trước hết ta thấy O, A nằm trên cùng một mặt phẳng bờ \(\Delta\).

Qua A kẻ đường thẳng d vuông góc với \(\Delta\) tại H.

Đường thẳng d có phương trình: \(x+y-2=0\)

\(\Rightarrow H\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow H=\left(0;2\right)\)

Gọi A' là điểm đối xứng với A qua d

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=-2\\y_{A'}=2y_H-y_A=4\end{matrix}\right.\Rightarrow A'=\left(-2;4\right)\)

\(\Rightarrow OA'=2\sqrt{5}\)

Phương trình đường thẳng OA': \(2x+y=0\)

Khi đó: \(OM+MA=OM+MA'\ge OA'=2\sqrt{5}\)

\(min=2\sqrt{5}\Leftrightarrow M\) là giao điểm của \(\Delta\) và OA'

\(\Leftrightarrow M\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\2x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\Rightarrow M=\left(-\dfrac{2}{3};\dfrac{4}{3}\right)\)

Akai Haruma
9 tháng 5 2021 lúc 19:09

Lời giải:

Vì $M$ thuộc $\Delta$ nên $M$ có tọa độ $(a-2,a)$

Độ dài đường gấp khúc $OMA$ là:

$OM+MA=\sqrt{a^2+(a-2)^2}+\sqrt{(a-4)^2+a^2}$

$=\sqrt{2}.(\sqrt{(a-1)^2+1}+\sqrt{(2-a)^2+2^2})$

$\geq \sqrt{2}.\sqrt{(a-1+2-a)^2+(1+2)^2}$ (theo BĐT Mincopxky)

$=2\sqrt{5}$

Vậy $OMA$ min bằng $2\sqrt{5}$. Giá trị này đạt tại $a=\frac{4}{3}$

Vậy $M(\frac{-2}{3},\frac{4}{3})$

nguyễn hoàng lê thi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 2 2018 lúc 10:46

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2020 lúc 16:10

\(\overrightarrow{AB}=\left(12;4\right)=4\left(3;1\right)\) ; \(\overrightarrow{AC}=\left(-3;4\right)\); \(\overrightarrow{BC}=\left(-15;0\right)=-15\left(1;0\right)\)

\(\Rightarrow\) Đáp án B là đáp án chính xác (vì có vtpt vuông góc với 1 trong 3 cạnh của tam giác, 3 đáp án còn lại ko vuông góc nên đều loại)

Phạm My
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2023 lúc 19:55

Câu 17:

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

Câu 15:

a: \(3x\left(x-1\right)+x-1=0\)

=>\(3x\left(x-1\right)+\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(3x+1\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b: \(x^2-6x=0\)

=>\(x\cdot x-x\cdot6=0\)

=>x(x-6)=0

=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2018 lúc 4:24

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2019 lúc 4:21

Chọn đáp án C

Games Channel
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 11 2020 lúc 18:07

a.

Gọi M là trung điểm AB, dựng hình bình hành BCMN \(\Rightarrow\overrightarrow{NM}=\overrightarrow{BC}\)

\(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IB}+2\overrightarrow{CI}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{CB}=\overrightarrow{0}\Leftrightarrow2\overrightarrow{IM}+2\overrightarrow{CB}=0\)

\(\Leftrightarrow\overrightarrow{IM}=\overrightarrow{BC}\Leftrightarrow I\) trùng N

b.

\(\overrightarrow{DB}+2\overrightarrow{DB}+2\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{DB}+2\overrightarrow{CB}=0\)

\(\Leftrightarrow\overrightarrow{DB}=2\overrightarrow{BC}\Rightarrow D\) là điểm nằm trên tia đối của tia BC sao cho \(BD=2BC\)

c.

\(\overrightarrow{AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\)

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}-2\overrightarrow{BC}=2\left(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\right)=2\overrightarrow{AI}\)

\(\Rightarrow A;I;D\) thẳng hàng

Khách vãng lai đã xóa
Knkninini
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 6 2020 lúc 22:48

\(\overrightarrow{CA}=\left(3;1\right);\overrightarrow{CB}=\left(15;5\right)=5\left(3;1\right)=5\overrightarrow{CA}\)

\(\Rightarrow A;B;C\) thẳng hàng

\(\Rightarrow\) Đường thẳng cách đều 3 điểm A;B;C là đường thẳng song song với AC

\(\Rightarrow\) Là đường thẳng nhận \(\left(1;-3\right)\) là 1 vtpt

Đáp án A đúng