Cho hàm số f ( x ) = 3 x + a - 1 k h i x ≤ 0 1 + 2 x - 1 x k h i x > 0 . Tìm tất cả giá trị của a để hàm số đã cho liên tục tại điểm x = 0
A. a = 1.
B. a = 3.
C. a = 2.
D. a = 4.
Cho hàm số f ( x ) = x 3 + m x 2 + x + 1 Gọi k là hệ số góc tiếp tuyến của đồ thị hàm số tại M có hoành độ x = 1. Tất cả các giá trị thực của tham số m để thỏa mãn k.f(-1)<0
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f x = 3 x + a - 1 k h i x ≤ 0 1 + 2 x - 1 x k h i x > 0 . Tìm tất cả giá trị của a để hàm số đã cho liên tục tại điểm x = 0.
A. a = 1
B. a = 3
C. a = 2
D. a = 4
Tìm tất cả các giá trị của m để hàm số f ( x ) = 1 - x - 1 + x x k h i x < 0 m + 1 - x 1 + x k h i x ≥ 0 liên tục tại x = 0
A. m = 1
B. m = -2
C. m = -1
D. m = 0
Cho hàm số y = f (x) có đạo hàm liên tục trên ℝ , với f (x) > 0 và f (0) = 1. Biết rằng f ' ( x ) + 3 x x - 2 f ( x ) = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4
B. - e 6 < m < - 1
C. - e 4 < m < - 1
D. 0 < m < e 4
Cho hàm số f x = 2 x + 1 − 1 x k h i x ≠ 0 x 2 − 2 m + 2 k h i x = 0 . Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x=0
A. m = 2
B. m = 3
C. m = 0
D. m = 1
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Cho hàm số f x = 3 x + a − 1 k h i x ≤ 0 1 + 2 x − 1 k h i x > 0 x . Tìm tất cả giá trị của a để hàm số đã cho liên tục trên i
A. a=1
B. a=3
C. a=2
D. a=4