Cho elip (E): x 2 16 + y 2 9 = 1 . Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó.
Cho elip \(\left(E\right):\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\)
Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó ?
Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .
Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)
Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .
Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .
Cho hình sau:
1) Trong mat phang toa do Oxy , cho elip (E) : \(\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) va vecto v = (2;1). Anh cua (E)qua phep tinh tien T la:
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có phương trình chính tắc \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Độ dài trục lớn của elip (E) là:
A. 10 B. 25 C. 9 D. 6
Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)
Độ dài trục lớn: \(2a=10\)
Cho Elip (E): \(\dfrac{x^2}{9}+\dfrac{y^2}{a}=1\). Tìm (E') là ảnh của (E) qua phép tịnh tiến theo v(2;1)
Cho Elip (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\). Tìm (E') là ảnh của (E) qua phép tịnh tiến theo v(2;1)
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc (E) \(\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên \(\Rightarrow M'\in\left(E'\right)\)
\(\left\{{}\begin{matrix}x'=x+2\\y'=y+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-1\end{matrix}\right.\)
Thế vào (1):
\(\dfrac{\left(x'-2\right)^2}{9}+\dfrac{\left(y'-1\right)^2}{4}=1\)
Hay pt (E') có dạng: \(\dfrac{\left(x-2\right)^2}{9}+\dfrac{\left(y-1\right)^2}{4}=1\)
Cho elip $\left( E \right): \, \dfrac{{ x^2}}{36}+\dfrac{{{y}^2}}{25}=1$. Xác định tiêu điểm, tiêu cự, trục lớn, trục bé, tâm sai của elip đó.
Có \(c=\sqrt{a^2-b^2}=\sqrt{11}\)
Tiêu điểm \(F_1\left(\sqrt{11},0\right);F_2\left(-\sqrt{11},0\right)\)
Tiêu cự \(F_1F_2=2\sqrt{11}\)
Trục lớn : 2a = 12
Trục bé 2b = 10
Tâm sai \(e=\dfrac{c}{a}=\dfrac{\sqrt{11}}{6}\)
Cho elip (E) có phương trình x²/16 + y²/9 =1. Viết phương trình đường thẳng (d) đi qua M(1;2) và cắt (E) tại A, B sao cho M là trung điểm AB
Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục lớn và trục nhỏ của các elip sau:
a) \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
b) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)
c) \({x^2} + 16{y^2} = 16\)
a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 6 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{{10}^2} - {6^2}} = 8 \)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 8;0} \right),{F_2}\left( {8;0} \right)\)
Tọa độ các đỉnh: \(A(0;6),B(10;0),C(0; - 6),D( - 10;0)\)
Độ dài trục lớn 20
Độ dài trục nhỏ 12
b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{5^2} - {4^2}} = 3\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)
Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)
Độ dài trục lớn 10
Độ dài trục nhỏ 8
c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)
Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)
Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{4^2} - {1^2}} = \sqrt {15} \)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)
Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)
Độ dài trục lớn 8
Độ dài trục nhỏ 2
Cho elip có phương trình:x2/16+y2/4=1.M là điểm thuộc (E) sao cho MF1=MF2.Khi đó tọa độ điểm M là?
(E) \(\frac{x^2}{16}+\frac{y^2}{4}=1\)
MF1 = MF2 => M thuộc đường trung trực của F1 F2 => M thuộc Oy
=> M( 0; m )
Vì M thuộc E nên ta có: \(\frac{m^2}{4}=1\)=> m = 2 hoặc m = - 2
=> M(0; 2) hoặc M ( 0 ; -2)
cho elip (e) có pt chính tắc: x^2/9 + y^2/4=1
a) tìm tọa độ đỉnh, tiêu điểm f1, f2, và tâm sai của (e)
b) tìm tọa độ điểm m thuộc (e) thõa mãn mf1 -mf2=2
(f1 là tiêu điểm bên trái của elip)