phân tích đa thức thành nhân tử:
a) 3x2 - 12y2
b) 5xy2 – 10 xyz + 5xz2
Phân tích đa thức thành nhân tử:
a.
b.
c.
d.
e.
g.
h.
a: 3x^2-12y^2
=3(x^2-4y^2)
=3(x-2y)(x+2y)
b: 5xy^2-10xyz+5xz^2
=5x(y^2-2yz+z^2)
=5x(y-z)^2
g: (a+b+c)^3-a^3-b^3-c^3
=(a+b+c-a)[(a+b+c)^2+a(a+b+c)+a^2]-(b+c)(b^2-bc+c^2)
=(b+c)[a^2+b^2+c^2+2ab+2ac+2bc+a^2+ab+ac+a^2-b^2+bc-c^2]
=(b+c)[3a^2+3ab+3bc+3ac]
=3(a+b)(b+c)(a+c)
Phân tích đa thức thành nhân tử:
a)10x2y-5xy2+15xyz
b)x3-x2-4x+4
c)x3-6x2+9x
\(a,=5xy\left(2x-y+3z\right)\\ b,=x^2\left(x-1\right)-4\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ c,=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Phân tích đa thức thành nhân tử:
a) 3x2+2x-5
b)25x2-12x-13
a) \(3x^2+2x-5=3x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(3x+5\right)\)
b) \(25x^2-12x-13=25x\left(x-1\right)+13\left(x-1\right)=\left(x-1\right)\left(25x+13\right)\)
a) \(3x^2+2x-5\)
\(=2x^2+x^2+2x-5\)
\(=\left(\sqrt{2}x\right)^2-\left(-\left(x\right)^2-2x+\left(1\right)^2\right)-4\)
\(=\left(\sqrt{2}x\right)^2-\left(-x-1\right)^2\)
\(=\left(\sqrt{2}.x+x+1\right)\left(\sqrt{2}.x-x-1\right)\)
Phân tích đa thức thành nhân tử:
a) 2ax2 - 18a
b) x3 - x + 3x2 -3
\(2a\left(x^2-9\right)=2a\left(x-3\right)\left(x+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 3x2 + xy - 4y2
b) x8 - 5x4 + 4
c) x3 + 3x2 + 3x - 7
Lời giải:
a.
$3x^2+xy-4y^2=(3x^2-3xy)+(4xy-4y^2)=3x(x-y)+4y(x-y)=(x-y)(3x+4y)$
b.
$x^8-5x^4+4=(x^8-x^4)-(4x^4-4)$
$=x^4(x^4-1)-4(x^4-1)=(x^4-1)(x^4-4)$
$=(x^2-1)(x^2+1)(x^2-2)(x^2+2)$
$=(x-1)(x+1)(x^2+1)(x-\sqrt{2})(x+\sqrt{2})(x^2+2)$
c.
$x^3+3x^2+3x-7=(x^3+3x^2+3x+1)-8$
$=(x+1)^3-2^3=(x+1-2)[(x+1)^2+2(x+1)+4]$
$=(x-1)(x^2+4x+7)$
a) \(3x^2+xy-4y^2=3x^2-3xy+4xy-4y^2\)
\(=3x(x-y)+4y(x-y)=(3x+4y)(x-y)\)
b)\(x^8-5x^4+4=x^8-x^4-4x^4+4\)
\(=x^2(x^4-1)-4(x^4-1)=(x^2-4)(x^4-1)\)
\(=(x-2)(x+2)(x^2-1)(x^2+1)=(x-2)(x+2)(x-1)(x+1)(x^2+1)\)
c)\(x^3+3x^2+3x-7=x^3+3x^2+3x+1-8\)
\(\left(x+1\right)^3-\sqrt{2}^3=\left(x+1-\sqrt[]{2}\right)\left(\left(x+1\right)^2+2\sqrt{2}x+2\right)\)
a: \(3x^2+xy-4y^2\)
\(=3x^2+4xy-3xy-4y^2\)
\(=x\left(3x+4y\right)-y\left(3x+4y\right)\)
\(=\left(3x+4y\right)\left(x-y\right)\)
b: \(x^8-5x^4+4\)
\(=x^8-x^4-4x^4+4\)
\(=x^4\left(x^4-1\right)-4\left(x^4-1\right)\)
\(=\left(x^4-4\right)\left(x^4-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^2-2\right)\left(x^2+2\right)\)
phân tích đa thức thành nhân tử:
a) x2 - 4xa + 4a2 - 81y2
b) 3x2 - 8x + 4
\(a,x^2-4xa+4a^2-81y^2=\left(x-2a\right)^2-\left(9y\right)^2=\left(x-2a-9y\right)\left(x-2a+9y\right)\\ b,3x^2-8x+4=\left(3x^2-6x\right)-\left(2x-4\right)=3x\left(x-2\right)-2\left(x-2\right)=\left(x-2\right)\left(3x-2\right)\)
Phân tích đa thức sau thành nhân tử:
a) 4x2 + 4xy + y2 - 9
b) 3x2 - x - 3xy + y
a: \(=\left(2x+y\right)^2-3^2=\left(2x+y+3\right)\left(2x+y-3\right)\)
b: =3x(x-y)-(x-y)=(x-y)(3x-1)
phân tích các đa thức sau thành nhân tử:
a,3x2-6xy+3y2
b,xy-9x+y-9
a,3x2-6xy+3y2
= 3(x2- 2xy+ y2)
= 3(x- y)2
b,xy-9x+y-9
= (xy+ y)- (9x+ 9)
= y(x+ 1)- 9(x+ 1)
= (x+1)(y- 9)
Chúc bạn học tốt
a,\(3x^2-6xy+3y^2\)
=\(3\left(x^2-2xy+y^2\right)\)
=\(3\left(x-y\right)^2\)
b,xy-9x+y-9
=\(\left(xy+y\right)-\left(9x+9\right)\)
=\(y\left(x+1\right)-9\left(x+1\right)\)
=\(\left(x+1\right)\left(y-9\right)\)
a) Ta có: \(3x^2-6xy+3y^2\)
\(=3\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)^2\)
b) Ta có: \(xy-9x+y-9\)
\(=x\left(y-9\right)+\left(y-9\right)\)
\(=\left(y-9\right)\left(x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
\(3x^4y-12x^2y^3=3x^2y\left(x^2-4y^2\right)=3x^2y\left(x-2y\right)\left(x+2y\right)\)
\(x^2-y^2-8y-16=x^2-\left(y^2+8y+16\right)=x^2-\left(y+4\right)^2=\left(x+y+4\right)\left(x-y-4\right)\)
\(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
\(3x^2-6xy+3y^2-27=3\left[\left(x-y\right)^2-9\right]=3\left(x-y-3\right)\left(x-y+3\right)\)