Giá trị nào của m thì hàm số y = x + m x - 2 nghịch biến trên từng khoảng xác định:
A. m < - 2
B. m ≤ - 2
C. m > - 2
D. m ≥ - 2
Giá trị nào của m thì hàm số y = x + m x - 2 nghịch biến trên từng khoảng xác định là:
A. m < -2
B. m ≤ - 2
C. m ≥ - 2
D. m > -2
Với giá trị nào của m thì hàm số y = x + m x - 1 nghịch biến trên từng khoảng xác định của nó
A. m < - 1
B. m ≤ - 1
C. m > - 1
D. m ≥ - 1
a.với giá trị nào của m thì hàm số y=(m+2)x-3 đồng biến trên tập xác định
b.với giá trị nào của k hàm số y=(3-k)x+2 nghịch biến trên R
c.trong mặt phẳng tọa độ Oxy tìm m để đường thẳng (d):y=(\(m^2\)-1)x+1
song song với đường thẳng (d') y=3x+m-1
Với giá trị nào của m thì hàm số:
a) y = f(x) = (m-1)x +m2 -3 đồng biến trên R
b) y = f (x) = -x2 + (m-1)x+2 nghịch biến trên (1;2)
Bài 1 : Cho hàm số y=(m-3)x+4 . Với giá trị nào của m thì hàm số đồng biến, nghịch biến Bài 4: Cho hàm số y=(3-√2) x+1 a, Hàm số đồng biến hay nghịch biến? Vì sao? b, Tính các giá trị tương ứng của y khi x nhân các giá trị sau ; O, 1, √2, 3+√2, 3-√2
Bài 1:
Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0
=>m>3
Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0
=>m<3
Bài 4:
a: Vì \(a=3-\sqrt{2}>0\)
nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R
b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)
Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)
Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)
=9-4-1
=9-5
=4
Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)
\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)
tìm các giá trị của m để hàm số
a) \(y=\dfrac{x+m}{x+1}\) nghịch biến trên từng khoảng xác định
b) \(y=\dfrac{2x-3m}{x-m}\) đồng biến trên từng khoảng xác định
a: TXĐ: D=R\{-1}
\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)
\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)
Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)
=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)
=>1-m<0
=>m>1
b: TXĐ: D=R\{m}
\(y=\dfrac{2x-3m}{x-m}\)
=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)
\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)
\(=\dfrac{m}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)
=>\(\dfrac{m}{\left(x-m\right)^2}>0\)
=>m>0
với giá trị nào của m thì hàm số sau đồng biến / nghịch biến trên (-∞, +∞)
a) y = (2m+5)x + m + 3
b) y = mx - 3 - x
a. Hàm đồng biến khi \(2m+5>0\Rightarrow m>-\dfrac{5}{2}\)
Hàm nghịch biến khi \(2m+5< 0\Rightarrow m< -\dfrac{5}{2}\)
b. \(y=\left(m-1\right)x-3\)
Hàm đồng biến khi \(m-1>0\Rightarrow m>1\)
Hàm nghịch biến khi \(m-1< 0\Rightarrow m< 1\)
tìm các giá trị của m để hàm số
a) \(y=\dfrac{2m-x}{x-3}\) đồng biến trên từng khoảng xác định
b) \(y=\dfrac{x+3}{x+m}\) nghịch biến trên từng khoảng xác định
a: TXĐ: D=R\{3}
\(y=\dfrac{2m-x}{x-3}\)
=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)
\(=\dfrac{3-2m}{\left(x-3\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ
=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)
=>3-2m>0
=>2m<3
=>\(m< \dfrac{3}{2}\)
b: TXĐ: D=R\{-m}
\(y=\dfrac{x+3}{x+m}\)
=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)
\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)
Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)
=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)
=>m-3<0
=>m<3
với giá trị nào của m thì hàm số sau là hàm số bậc nhất y=(m-5)x +3 nghịch biến trên R
\(\Leftrightarrow m-5< 0\Leftrightarrow m< 5\)
Hàm số nghịch biến trên R khi: \(m-5< 0\Leftrightarrow m< 5\)