Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng
Xem chi tiết
Hoàng
11 tháng 3 2021 lúc 21:38

undefined

Hoàng
11 tháng 3 2021 lúc 21:39

undefined

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 0:26

a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)

=>4m=-13

hay m=-13/4

c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)

=>-8m>=-4

hay m<=1/2

Dâu Tây
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2021 lúc 0:19

\(\Delta'=\left(m-3\right)^2-\left(m^2+3\right)=-6m+6>0\Rightarrow m< 1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(x_1^2+x_2^2=86\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow4\left(m-3\right)^2-2\left(m^2+3\right)=86\)

\(\Leftrightarrow m^2-12m-28=0\Rightarrow\left[{}\begin{matrix}m=14\left(loại\right)\\m=-2\end{matrix}\right.\)

Nguyễn Huy Tú
14 tháng 4 2021 lúc 6:08

Ta có : \(\Delta=\left(2m+6\right)^2-4\left(m^2+3\right)=4m^2+24m+36-4m^2-12=24m+24\)

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

\(24m+24>0\Leftrightarrow24m>-24\Leftrightarrow m>-1\)

Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

mà \(\left(x_1+x_2\right)^2=\left(2m+6\right)^2\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2x_1x_2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2m^2-6=2m^2+24m+30\)

Lại có : \(x_1^2+x_2^2=86\)hay \(2m^2+24m+30=86\Leftrightarrow2\left(m^2+12m-28\right)=0\)

\(\Leftrightarrow2\left(m-2\right)\left(m+14\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(chon\right)\\m=-14\left(loại\right)\end{matrix}\right.\)

 

l҉o҉n҉g҉ d҉z҉
14 tháng 4 2021 lúc 6:30

Để phương trình có hai nghiệm phân biệt thì Δ > 0

=> [ -(m-3) ]2 - (m2 + 3) > 0

<=> m2 - 6m + 9 - m2 - 3 > 0

<=> -6m + 6 > 0

<=> m < 1

Vậy với m < 1 thì phương trình có hai nghiệm phân biệt

Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

Khi đó x12 + x22 = 86

<=> ( x1 + x2 )2 - 2x1x2 - 86 = 0

<=> ( 2m - 6 )2 - 2( m2 + 3 ) - 86 = 0

<=> 4m2 - 24m + 36 - 2m2 - 6 - 86 = 0

<=> 2m2 - 24m - 56 = 0

<=> m2 - 12m - 28 = 0

Δ' = b'2 - ac = 36 + 28 = 64

Δ' > 0, áp dụng công thức nghiệm thu được m1 = 14 (ktm) ; m2 = -2 (tm)

Vậy với m = -2 thì thỏa mãn đề bài

thùy linh
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 19:12

Bài 9:

Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)

Akai Haruma
6 tháng 1 2023 lúc 19:14

Bài 8:

a. Khi $m=2$ thì pt trở thành:

$(2^2-9)x-3=2$

$\Leftrightarrow -5x-3=2$

$\Leftrightarrow -5x=5$

$\Leftrightarrow x=-1$ 

b.

Khi $m=3$ thì pt trở thành:

$(3^2-9)x-3=3$

$\Leftrightarrow 0x-3=3$

$\Leftrightarrow 0=6$ (vô lý)

c. Khi $m=3$ thì pt trở thành:

$[(-3)^2-9]x-3=-3$

$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy pt vô số nghiệm thực.

Hải Yến Lê
Xem chi tiết
Dưa Hấu
11 tháng 7 2021 lúc 14:55

undefined

HT2k02
11 tháng 7 2021 lúc 14:55

a) Với m = -3 phương trình trở thành

\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)

b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)

\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)

Ta có : 

\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)

Nguyễn Huy Tú
11 tháng 7 2021 lúc 14:59

undefined

Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Huyền còi chấm mắm tôm
Xem chi tiết
sunny
Xem chi tiết
Phạm Trần Bảo Trâm
Xem chi tiết
Lạnh Lạnh
21 tháng 4 2015 lúc 21:57

1.delta = (-m)2    -  4 ( 2m - 3 ).1  =m2  - 8m  + 12 Để phương trình có nghiệm thì delta >= 0 

giải bất phương trình:  m2 - 8 m + 12 >=0  <=> (m-6) (m-2) >=0 => m> 6 hoặc m<2

3. delta >=0 thì phương rình có 2 nghiệm x 1,  x2 

 theo viet x1 + x2 = m
              x1 . x2 = 2m-3

ta có   x1+ x22 = (x1 + x2) 2 - 2 x1. x2 = m2 - 2.(2m-3) = m2  -4m + 6

2.  m=0 thì phải ???

 mk viết thôi, chưa có suy nghĩ và khảo kĩ.. sai mong thông cảm

 

Lê Minh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 20:34

\(\text{Δ}_1=\left(-3\right)^2-4\cdot1\cdot\left(2m+3\right)\)

\(=9-8m-12\)

\(=-8m-3\)

\(\text{Δ}_2=\left(-4\right)^2-4\cdot1\cdot\left(m-1\right)\)

\(=16-4m+4\)

\(=-4m+20\)

Để (2) là phương trình hệ quả của (1) thì -8m-3=-4m+20

\(\Leftrightarrow-4m=23\)

hay \(m=-\dfrac{23}{4}\)