lim n n 2 + 2 − n 2 − 1 bằng
A. 0
B. 1,499
C. + ∞
D. 3 2
a, lim \(\dfrac{\sqrt{n+1}}{1+\sqrt{n}}\)
b, lim \(\dfrac{1+2+...+n}{n^2+2}\)
c, lim \((\sqrt{n^2+n+1}-n)\)
d, lim \((\sqrt{3n-1}-\sqrt{2n-1})\)
e, lim \((\sqrt[3]{n^3+2n^2}-n)\)
g, lim \(\dfrac{(2)^{n}+(3)^{n+2}}{4×(3)^{n}+(2)^{n+3}}\)
a/ \(=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}{\dfrac{1}{\sqrt{n}}+\sqrt{\dfrac{n}{n}}}=1\)
b/ \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\lim\limits\dfrac{n\left(n+1\right)}{2n^2+4}=\lim\limits\dfrac{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}{\dfrac{2n^2}{n^2}+\dfrac{4}{n^2}}=\dfrac{1}{2}\)
c/ \(=\lim\limits\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{n+1}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{n}{n}}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
d/ \(=\lim\limits\left[\sqrt{n}\left(\sqrt{3-\dfrac{1}{\sqrt{n}}}-\sqrt{2-\dfrac{1}{\sqrt{n}}}\right)\right]=\lim\limits\left[\sqrt{n}\left(\sqrt{3}-\sqrt{2}\right)\right]=+\infty\)
e/ \(=\lim\limits\dfrac{n^3+2n^2-n-n^3}{\left(\sqrt[3]{n^3+2n^2}\right)^2+n.\sqrt[3]{n^3+2n^2}+n^2}=\lim\limits\dfrac{2n^2-n}{\left(n^3+2n^2\right)^{\dfrac{2}{3}}+n.\left(n^3+2n^2\right)^{\dfrac{1}{3}}+n^2}\)
\(=\dfrac{2}{1+1+1}=\dfrac{2}{3}\)
g/ \(=\lim\limits\dfrac{2^n+9.3^n}{4.3^n+8.2^n}=\lim\limits\dfrac{\left(\dfrac{2}{3}\right)^n+9.\left(\dfrac{3}{3}\right)^n}{4.\left(\dfrac{3}{3}\right)^n+8.\left(\dfrac{2}{3}\right)^n}=\dfrac{9}{4}\)
tính các giới hạn sau
a) lim (3n^2+n^2-1) b)lim n^3+3n+1/2n-n^3
c) lim -2n^3+3n+1/n-n^2 d) lim(n+ căn n^2-2n
e) lim (2n-3*2n+1) f) (căn 4n^2-n -2n) g) lim (căn n^2+3n-1 - 3^căn n^3-n)
Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm
Tính:
A= \(lim\dfrac{n+1}{n^2+2n}\)
B= \(lim\left(-2n^3+n^2+2\right)\)
C= \(lim\dfrac{\sqrt{9n^2-n-1}}{4n-2}\)
D= \(lim\dfrac{3^n+5.4^n}{4^n+2^n}\)
\(a=\lim\dfrac{\dfrac{1}{n}+\dfrac{1}{n^2}}{1+\dfrac{2}{n}}=\dfrac{0}{1}=0\)
\(b=\lim n^3\left(-2+\dfrac{1}{n}+\dfrac{2}{n^3}\right)=+\infty.\left(-2\right)=-\infty\)
\(c=\lim\dfrac{\sqrt{9-\dfrac{1}{n}-\dfrac{1}{n^2}}}{4-\dfrac{2}{n}}=\dfrac{\sqrt{9}}{4}=\dfrac{3}{4}\)
\(d=\lim\dfrac{\left(\dfrac{3}{4}\right)^n+5}{1+\left(\dfrac{2}{4}\right)^n}=\dfrac{5}{1}=5\)
Tìm các giới hạn sau:
a)\(lim\left[n^2\left(\sqrt{n^2+2}-\sqrt{n^2+4}\right)\right]\)
b)lim( \(\dfrac{3}{n-2}-5n\))
c) lim(\(\dfrac{n-1}{\sqrt{3}-n}-\dfrac{4}{2^{-n}}\))
d) \(lim\left(\dfrac{n^2-4}{n-2}-\dfrac{3n^2+4}{n}\right)\)
e) \(lim\dfrac{\sqrt{n^2+1}-n\sqrt{5}}{\sqrt{n^2+1}+n\sqrt{5}}\)
\(a=\lim\dfrac{-2n^2}{\sqrt{n^2+2}+\sqrt{n^2+4}}=\lim\dfrac{-2n}{\sqrt{1+\dfrac{2}{n^2}}+\sqrt{1+\dfrac{4}{n^2}}}=\dfrac{-\infty}{2}=-\infty\)
\(b=\lim\dfrac{3-5n^2+10n}{n-2}=\lim\dfrac{-5n+10+\dfrac{3}{n}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(c=\lim\left(\dfrac{1-\dfrac{1}{n}}{\dfrac{\sqrt{3}}{n}-1}-4.2^n\right)=-1-\infty=-\infty\)
\(d=\lim\dfrac{n^3-4n-\left(3n^2+4\right)\left(n-2\right)}{n^2-2n}=\lim\dfrac{-2n^3+6n^2-8n+8}{n^2-2n}\)
\(\lim\dfrac{-2n+6-\dfrac{8}{n}+\dfrac{8}{n^2}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(e=\lim\dfrac{\sqrt{1+\dfrac{1}{n}}-\sqrt{5}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{5}}=\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
a) lim \(\left(-3n^3+n^2-1\right)\)
minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n
7/ lim \(\sqrt{n^2+4n+1}-n\)
8/ lim \(n-\sqrt{n^2+9n-1}\) (pp liên hợp lim \(\dfrac{n^2-\left(n^2+9n-1\right)}{n+\sqrt{n^2+9n-1}}\)
9/ lim \(\dfrac{1+2+3+...+n}{n^2-1}\)
7/
\(=\lim\dfrac{n^2+4n+1-n^2}{\sqrt{n^2+4n+1}+n}=\lim\dfrac{4n+1}{\sqrt{n^2+4n+1}+n}=\lim\dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+1}=\dfrac{4}{1+1}=2\)
8/
\(=\lim\dfrac{n^2-\left(n^2+9n-1\right)}{n+\sqrt{n^2+9n-1}}=\lim\dfrac{-9n+1}{n+\sqrt{n^2+9n-1}}=\lim\dfrac{-9+\dfrac{1}{n}}{1+\sqrt{1+\dfrac{9}{n}-\dfrac{1}{n^2}}}=\dfrac{-9}{1+1}=-\dfrac{9}{2}\)
9/
Do \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}=\dfrac{n^2+n}{2}\)
\(\Rightarrow\lim\dfrac{1+2+...+n}{n^2-1}=\lim\dfrac{n^2+n}{2n^2-2}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{2}{n^2}}=\dfrac{1}{2}\)
tính
a.\(\lim\limits_{n->+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)
b.\(\lim\limits_{n->+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)
c.\(\lim\limits_{n->+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)
d.\(\lim\limits_{n->+\infty}\left(n-\sqrt{n^2+n+1}\right)\)
a: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(\dfrac{2n^3}{n^3}-\dfrac{1}{n^3}\right)\left(\dfrac{n^2+n+1}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(2-\dfrac{1}{n^3}\right)\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}\)
\(=\dfrac{1}{2\cdot1}=\dfrac{1}{2}\)
b: \(\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{n\left(1+\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{1+\dfrac{2}{n}}=\dfrac{\sqrt{1-0+0}}{1+0}=\dfrac{1}{1}=1\)
c: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{n}{n^2}-\dfrac{\sqrt[3]{n^2-n^3}}{n^2}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{1}{n}-\sqrt[3]{\dfrac{1}{n^4}-\dfrac{1}{n^3}}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}=\dfrac{0}{1}=0\)
d: \(\lim\limits_{n\rightarrow+\infty}\left(n-\sqrt{n^2+n+1}\right)\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2-n^2-n-1}{n+\sqrt{n^2+n+1}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-n-1}{n+\sqrt{n^2+n+1}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-1-\dfrac{1}{n}}{1+\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}}=-\dfrac{1}{1+1}=-\dfrac{1}{2}\)
1/ lim \(\dfrac{\sqrt{n^4-n^2}+3n^2}{1-n^2}\)
2/ lim \(\dfrac{n\sqrt{n}-n^3}{4n^3+\sqrt{n}}\)
3/ lim \(\dfrac{3.4^n-1}{2.3^n+4}\)
4/ lim \(\dfrac{2^{n+1}+4.3^{n-1}}{1-2^{n-1}+3^{n+1}}\)
1/...
2/ \(=\lim\dfrac{\dfrac{1}{n\sqrt{n}}-1}{4+\dfrac{1}{n^2\sqrt{n}}}=\dfrac{0-1}{4+0}=-\dfrac{1}{4}\) (chia cả tử-mẫu cho \(n^3\))
3/ \(=\lim\dfrac{3-\left(\dfrac{1}{4}\right)^n}{2.\left(\dfrac{3}{4}\right)^n+4\left(\dfrac{1}{4}\right)^n}=\dfrac{3-0}{2.0+3.0}=\dfrac{3}{0}=+\infty\) (chia tử mẫu cho \(4^n\))
4/ \(=\lim\dfrac{2.2^n+\dfrac{4}{3}.3^n}{1-\dfrac{1}{2}.2^n+3.3^n}=\lim\dfrac{2.\left(\dfrac{2}{3}\right)^n+\dfrac{4}{3}}{\left(\dfrac{1}{3}\right)^n-\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^n+3}=\dfrac{2.0+\dfrac{4}{3}}{0-\dfrac{1}{2}.0+3}=\dfrac{4}{9}\) (chia tử mẫu cho \(3^n\))
Tìm các giới hạn sau:
a) \(\lim \frac{{ - 2n + 1}}{n}\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n}\)
c) \(\lim \frac{4}{{2n + 1}}\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}}\)
a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) = - 2\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}} = 4\)
c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)
tính giới hạn
1.\(\lim\limits\left(n^3+4n^2-1\right)\)
2.\(lim\dfrac{\left(n+1\right)\sqrt{n^2-n+1}}{3n^2+n}\)
3.\(lim\dfrac{1+2+....+n}{2n^2}\)
4.\(lim\dfrac{3^n-4.2^{n-1}-10}{7.2^n+4^n}\)
1.
\(\lim (n^3+4n^2-1)=\infty\) khi $n\to \infty$
2.
\(\lim\limits_{n\to -\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to -\infty}\frac{-\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to -\infty}\frac{-(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{-1}{3}\)
\(\lim\limits_{n\to +\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to +\infty}\frac{\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to +\infty}\frac{(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{1}{3}\)
3.
\(\lim \frac{1+2+...+n}{2n^2}=\lim \frac{n(n+1)}{4n^2}=\lim \frac{n^2+n}{4n^2}\\ =\lim (\frac{1}{4}+\frac{1}{4n})=\frac{1}{4}\)
4.
\(\lim \frac{3^n-4.2^{n-1}-10}{7.2^n+4^n}=\lim \frac{(\frac{3}{4})^n-(\frac{2}{4})^{n-1}-\frac{10}{4^n}}{7(\frac{2}{4})^n+1}\\ =\lim \frac{(\frac{3}{4})^n-(\frac{1}{2})^{n-1}-\frac{10}{4^n}}{7(\frac{1}{2})^n+1}\\ =\frac{0-0-0}{7.0+1}=0\)