Hàm số y = x 2 + m x + 1 x + m đạt cực đại tại x = 2 khi giá trị của m bằng
A. -3
B. 3
C. -1
D. 1
bài1 tìm m để các hàm số
a) y=(m-1)x^2 đông biến khi x>0
b) y=(3-m)x^2 nghịch biến x>0
c) y=(m^2-m)x^2 nghịch biến khi x>0
bài 2/ cho hàm số y=(m^2+1)x^2 (m là tham số ) . hỏi khi x<0 thì hàm số trên đồng biến hay nghịch biến
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Bài 2
Với x < 0 thì hàm số trên nghịch biến do m^2 + 1 > 0
Bài 1: Tìm m để hàm số sau là hàm số bậc nhất:
a) y = \(\sqrt{m-2}\).(-x+1) , (x là biến )
b) y = (m - 1).(m +1). x + 2
c) y = (m + 2). x^2 + 2.(m^2 - 4).x +15
a: Để hàm số là hàm số bậc nhất thì m-2>0
hay m>2
b: Để hàm số là hàm số bậc nhất thì \(\left(m-1\right)\left(m+1\right)>0\)
hay \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Bài 1: Tìm m để:
a) Hàm số y = (m + \(2\sqrt{m}\) + 1)x - 10 là hàm số đồng biến
b) Hàm số y = (\(\sqrt{m}\) - 3)x + 2 là hàm số nghịch biến
a) \(y=\left(m+2\sqrt{m}+1\right)x-10\) là hàm số đồng biến khi: \(\left(m\ge0\right)\)
\(m+2\sqrt{m}+1>0\)
\(\Leftrightarrow\left(\sqrt{m}+1\right)^2>0\) (luôn đúng)
Nên hàm số này luôn là hàm số đồng biến với \(m\ge3\)
b) \(y=\left(\sqrt{m}-3\right)x+2\) là hàm số nghịch biến khi: \(\left(m\ge0\right)\)
\(\sqrt{m}-3< 0\)
\(\Leftrightarrow\sqrt{m}< 3\)
\(\Leftrightarrow m< 9\)
\(\Leftrightarrow0\le m< 9\)
Bài 1: Trong m để các hàm số:
a) y= (3 - m)x + 4 đi qua A( 1 ; 4 )
b) y= mx - x + 3 là hàm số bậc nhất
c) y= (\(^{m^2}\) - 4 )x - 2022 là hàm số bậc nhất
d) y= x - 2 ; y= 2x -1 ; y= ( m - 1 )x +2m là 3 đường thẳng đồng qui
e) y= ( 2a - 1 )x - a + 2 cắt trục hoành tại điểm có hoành độ = 1
a) Ta có hàm số: \(y=\left(3-m\right)x+4\) đi qua A(1 ; 4)
\(\Leftrightarrow4=\left(3-m\right)\cdot1+4\)
\(\Leftrightarrow4=3-m+4\)
\(\Leftrightarrow4-4=3-m\)
\(\Leftrightarrow m=3\)
b) Ta có hàm số: \(y=mx-x+3=\left(m-1\right)x+3\) y là hàm số bật nhất khi:
\(m+1\ne0\)
\(\Leftrightarrow m\ne1\)
c) Ta có ham số: \(y=\left(m^2-4\right)x-2022\) là hàm số bậc nhất khi:
\(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ne2\\m\ne-2\end{matrix}\right.\)
d) Ta có 3 hàm số:
\(\left(d_1\right)y=x-2\); \(\left(d_2\right)y=2x-1\); \(\left(d_3\right)=y=\left(m-1\right)x+2m\)
Xét phương trình hoành độ là giao điểm của (d1) và (d2) là:
\(x-2=2x-1\)
\(\Leftrightarrow2x-x=-2+1\)
\(\Leftrightarrow x=-1\)
\(\Rightarrow\left(d_1\right)y=-1-2=-3\)
Nên giao điểm của (d1) và (d2) \(\left(-1;-3\right)\)
\(\Leftrightarrow\left(d_3\right):-3=\left(m-1\right)\cdot-1+2m\)
\(\Leftrightarrow-3=-m+1+2m\)
\(\Leftrightarrow\left(-m+2m\right)=-1-3\)
\(\Leftrightarrow m=-4\)
e) Ta có hàm số: \(y=\left(2a-1\right)x-a+2\) cắt trục hoành tại điểm có hành độ bằng 1
Nên (d) đi qua: \(A\left(1;0\right)\)
\(\Leftrightarrow0=\left(2a-1\right)\cdot1-a+2\)
\(\Leftrightarrow0=2a-1-a+2\)
\(\Leftrightarrow0=a+1\)
\(\Leftrightarrow a=-1\)
a) m = 3
b) m # 1
c) m # 2 và -2
d) m = -4
e) a = -1
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a) \(y = m{x^4} + (m + 1){x^2} + x + 3\)
b) \(y = (m - 2){x^3} + (m - 1){x^2} + 5\)
a) Để hàm số \(y = m{x^4} + (m + 1){x^2} + x + 3\) là hàm số bậc hai thì:
\(\left\{ \begin{array}{l}m = 0\\m + 1 \ne 0\end{array} \right.\) tức là \(m = 0.\)
Khi đó \(y = {x^2} + x + 3\)
Vây \(m = 0\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + x + 3\)
b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:
\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)
Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)
Vây \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)
1) hàm số \(y=\dfrac{x+5}{x+m}\) đồng biến trên khoảng (\(-\infty\),-8)
2) hàm số \(y=\dfrac{x+4}{x+m}\) đồng biến trên khoảng (\(-\infty\),-7)
3) hàm số \(y=\dfrac{x+2}{x+m}\) đồng biến trên khoảng (\(-\infty\),-5)
1) y= (m^2 +1)x + 2020 chứng tỏ hàm số là hàm số bậc nhất với mọi m
2) Y= (m^2 + 1)x + 2020 chứng tỏ hàm số đồng biến với mọi m
a.
Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m
b.
\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m