Biết |x2 + 2021| = −2x + 2021. Tổng các giá trị của x thỏa mãn là:
Cho các số x y thỏa mãn x^2 + 5y^2 + 2x - 6y - 4xy + 2 = 0. Tính giá trị biểu thức S = x^2020 + (y-2)^2021
tất cả giá trị x thỏa mãn 4 x ^2 ( x + 2021) - x - 2021=0
\(\Leftrightarrow4x^2\left(x+2021\right)-\left(x+2021\right)=0\\ \Leftrightarrow\left(x+2021\right)\left(4x^2-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=-2021\end{matrix}\right.\)
Lời giải:
$4x^2(x+2021)-x-2021=0$
$\Leftrightarrow 4x^2(x+2021)-(x+2021)=0$
$\Leftrightarrow (x+2021)(4x^2-1)=0$
$\Leftrightarrow (x+2021)(2x-1)(2x+1)=0$
$\Rightarrow x+2021=0$ hoặc $2x-1=0$ hoặc $2x+1=0$
$\Leftrightarrow x=-2021$ hoặc $x=\pm \frac{1}{2}$
cho x và y thỏa mãn điều kiện x^2-2xy+6y^2-12x+2y+41=0.tính giá trị của P=2021.(10-x-2y)^2021-8(6y-x)^2022
Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$
$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$
$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$
$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$
Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$
$\Rightarrow x-y-6=y-1=0$
$\Rightarrow y=1; x=7$
$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$
$=2021-8=2013$
cho các số a, b khác nhau thỏa mãn a^3+b^3-30ab=2021 .Hỏi tổng a+b không thể nhận giá trị nào ?
Có bao nhiêu giá trị nguyên m để phương trình 20212x - 22. 2021x + 2021 - m= 0 có 2 nghiệm x1, x2 thỏa mãn: x1 + x2 ≥ \(\dfrac{1}{2}\)
\(2021^x=t>0\Rightarrow t^2-22t+2021-m=0\)
Pt có 2 nghiệm nên (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=121-\left(2021-m\right)\ge0\\t_1+t_2=22>0\\t_1t_2=2021-m>0\end{matrix}\right.\) (1)
\(x=log_{2021}t\Rightarrow x_1+x_2=log_{2021}t_1+log_{2021}t_2=log_{2021}\left(t_1t_2\right)\)
\(\Rightarrow log_{2021}\left(t_1t_2\right)\ge\dfrac{1}{2}\Rightarrow t_1t_2\ge\sqrt{2021}\)
\(\Rightarrow2021-m\ge\sqrt{2021}\) (2)
(1);(2) \(\Rightarrow m\)
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
tính tổng rồi tính giá trị của biểu thức tại x=1 và y=-1 b)x^2020y^2021+4x^2020y^2021-2x^2020y^2021 hép mình làm ơn ạ:(((
b: \(=1^{2020}\cdot\left(-1\right)^{2021}+4\cdot1^{2020}\cdot\left(-1\right)^{2021}-2\cdot1^{2020}\cdot\left(-1\right)^{2021}\)
\(=1\cdot\left(-1\right)+4\cdot1\cdot\left(-1\right)-2\cdot1\cdot\left(-1\right)\)
=-1-4+2
=-3
Cho hai số thực a,b thỏa mãn \(2021\le a\le2022,2021\le b\le2022\)
TÌm giá trị lớn nhất của biểu thức: \(A=\left(a+b\right)\left(\dfrac{2021}{a}+\dfrac{2021}{b}\right)\)
Áp dụng bđt `1/x+1/y>=4/(x+y)`
`=>A>=(a+b).(2021.4)/(a+b)`
`=>A>=2021.4=8084`
Dấu "=" xảy ra khi \(\left[ \begin{array}{l}a=b=2021\\a=b=2022\end{array} \right.\)
Giá trị của biểu thức sau bằng bao nhiêu?
2021 × 87 + 20,21 × 1400 - 2021
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên