Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bach nhac lam
Xem chi tiết
tthnew
25 tháng 4 2020 lúc 18:22

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

zZz Cool Kid zZz
26 tháng 4 2020 lúc 11:26

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

bach nhac lam
2 tháng 3 2020 lúc 23:47
Khách vãng lai đã xóa
dbrby
Xem chi tiết
forever young
Xem chi tiết
Quang Trần Minh
Xem chi tiết
Nguyễn Đức Tiến
10 tháng 3 2018 lúc 21:07

Xét \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1+x+1-x+x^2}{2}=\frac{x^2+2}{2}\)

      \(\Rightarrow\sqrt{\frac{1}{1+x^3}}\ge\frac{2}{x^2+2}\)

Xét \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(b+c\right)^3}{a^3}}}\)  \(=\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\)

       \(\Rightarrow\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\ge\frac{2}{\frac{\left(b+c\right)^2}{a^2}+2}\) 

         \(=\frac{2a^2}{b^2+c^2+2bc+2a^2}\ge\frac{2a^2}{2b^2+2c^2+2a^2}\) (1)  (cái này bạn tự quy đồng sau đó áp dụng cosi cho 2bc)

Tương tự  \(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{2b^2}{2a^2+2b^2+2c^2}\)  (2)     \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{2c^2}{2a^2+2b^2+2c^2}\)  (3)

 Cộng các vế của (1),(2) và (3) ta có đpcm

                                                                                   

Nguyễn Thị Tường Vy
Xem chi tiết
Agami Raito
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2020 lúc 5:41

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\) để dễ nhìn đặt \(\frac{b+c}{a}=x\)

\(\sqrt{\frac{1}{1+x^3}}=\frac{1}{\sqrt{\left(x+1\right)\left(x^2-x+1\right)}}\ge\frac{2}{x+1+x^2-x+1}=\frac{2}{x^2+2}=\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)

\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2b^2+2c^2}=\frac{a^2}{a^2+b^2+c^2}\)

Tương tự: \(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\) ; \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Cộng vế với vế: \(P\ge\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

Khánh Ngọc
Xem chi tiết
Akai Haruma
3 tháng 11 2019 lúc 12:04

Lời giải:
Áp dụng BĐT AM-GM:

\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)

\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)

\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)

\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)

Ta cần CM \(M\geq \frac{4}{3}\)

\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)

Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=2$

Khách vãng lai đã xóa
Bùi Quang Minh
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
nguyễn thị ngọc minh
13 tháng 10 2016 lúc 20:29

đi ,nt ,mình giải cho

Đinh Thị Ngọc Anh
13 tháng 10 2016 lúc 21:42

nt là gì