Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tung Dao Manh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2020 lúc 13:00

\(\Leftrightarrow16sin^4x.cos^4x+cos^4x-1=0\)

\(\Leftrightarrow16sin^4x.cos^4x+\left(cos^2x+1\right)\left(cos^2x-1\right)=0\)

\(\Leftrightarrow16sin^4x.cos^4x-sin^2x\left(cos^2x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(16sin^2x.cos^4x-cos^2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\16sin^2x.cos^4x-cos^2x-1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow16cos^4x\left(1-cos^2x\right)-cos^2x-1=0\)

Đặt \(cos^2x=t\in\left[0;1\right]\)

\(\Rightarrow16t^2\left(1-t\right)-t-1=0\)

\(\Leftrightarrow-16t^3+16t^2-t-1=0\)

Nghiệm của pt bậc 3 này rất xấu cho nên chúng ta chỉ xác định được 1 nghiệm \(x=k\pi\)

Trần Ánh
Xem chi tiết
Siêu Phẩm Hacker
17 tháng 9 2019 lúc 15:41

1.

        \(\cos2x+\sin\left(x+\frac{pi}{4}\right)=0\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=-\cos2x\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=\sin\left(2x-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{pi}{4}=2x-\frac{pi}{2}+k2pi\\x+\frac{pi}{4}=pi-2x+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{3}{4}pi+k2pi\\3x=+\frac{5}{4}pi+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}pi+k2pi\\x=\frac{5}{12}pi+k\frac{2}{3}pi\end{cases}}\)

2.

\(\sin\left(3x-\frac{5pi}{6}\right)+\cos\left(3x+\frac{3pi}{6}\right)=0\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=-\cos\left(3x+\frac{3pi}{6}\right)\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=\sin\left(3x+\frac{3pi}{6}-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{5pi}{6}=3x+\frac{3pi}{6}-\frac{pi}{2}+k2pi\\3x-\frac{5pi}{6}=pi-3x-\frac{3pi}{6}+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}0x=\frac{5pi}{6}+k2pi\left(VN\right)\\6x=\frac{11pi}{6}+k2pi\end{cases}}\)

\(\Leftrightarrow x=\frac{11pi}{36}+k\frac{1}{3}pi\)

Cac Son
Xem chi tiết
Jeong Soo In
24 tháng 2 2020 lúc 9:27

Ta có:

(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0

⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0

\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)

Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)

Khách vãng lai đã xóa
Jeong Soo In
24 tháng 2 2020 lúc 9:34

Tương tự, ta có:

(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0

⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0

\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy trong các số trên thì 2 là nghiệm của phương trình.

Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.

Chúc bạn học tốt@@

Khách vãng lai đã xóa
Cac Son
24 tháng 2 2020 lúc 9:22

nhanh ho mik vs a

Khách vãng lai đã xóa
le cong tuan
Xem chi tiết
Bình Dị
28 tháng 2 2017 lúc 19:50

Thay x=1 vào phương trình ta có:

\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)

\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)

TH1: \(a=\dfrac{2}{3}\)

\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)

TH2:a=1

\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Bình Dị
28 tháng 2 2017 lúc 19:25

ha ha kiểm tra 45' của tôi nek

le cong tuan
Xem chi tiết
Quang Vinh
28 tháng 2 2017 lúc 19:45

Thay x=1 ta được ( 1 - 3a + 1 )( 3 + 2a - 5)

<=> a = 1 (bạn tự giải ra nha, laptop mình hơi mát)

Thay a = 1 ta được: ( x - 3 + 1)( 3x + 2 - 5)

<=> 3(x - 2)(x - 1)

<=> Nghiệm còn lại: x= 2

Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 22:08

Đề bài tào lao thật sự

Vừa độ vừa radian trong 1 phương trình là không chính xác. Đã độ thì độ hết, đã radian thì radian hết

Mai Anh
Xem chi tiết
Hung nguyen
1 tháng 8 2021 lúc 15:36

\(\dfrac{sin^42x+cos^42x}{tan\left(\dfrac{\pi}{4}-x\right)tan\left(\dfrac{\pi}{4}+x\right)}=cos^4x\)

\(\Leftrightarrow\dfrac{sin^42x+cos^42x}{cot\left(\dfrac{\pi}{4}+x\right)tan\left(\dfrac{\pi}{4}+x\right)}=cos^4x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^4x\)

Giờ hạ bậc nữa là xong rồi. Làm nốt

Hồng Phúc
1 tháng 8 2021 lúc 15:55

Hình như đề bạn bị lỗi, thấy chỗ nào cũng ghi là \(cos^44x\).

ĐK: \(x\ne\dfrac{3\pi}{4}+k\pi;x\ne\dfrac{\pi}{4}+k\pi\)

\(\dfrac{sin^42x+cos^42x}{tan\left(\dfrac{\pi}{4}-x\right).tan\left(\dfrac{\pi}{4}+x\right)}=cos^44x\)

\(\Leftrightarrow\dfrac{sin^42x+cos^42x}{\dfrac{sin\left(\dfrac{\pi}{4}-x\right)}{cos\left(\dfrac{\pi}{4}-x\right)}.\dfrac{sin\left(\dfrac{\pi}{4}+x\right)}{cos\left(\dfrac{\pi}{4}+x\right)}}=cos^44x\)

\(\Leftrightarrow\dfrac{sin^42x+cos^42x}{\dfrac{cosx-sinx}{cosx+sinx}.\dfrac{cosx+sinx}{cosx-sinx}}=cos^44x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow cos^44x-\dfrac{1}{2}cos^24x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^24x=1\\cos^24x=-\dfrac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}cos8x=\dfrac{1}{2}\)

\(\Leftrightarrow cos8x=1\)

\(\Leftrightarrow x=\dfrac{k\pi}{4}\)

Đối chiều điều kiện ban đầu ta được \(x=\dfrac{k\pi}{2}\)

Trần
Xem chi tiết
Nguyễn Phương HÀ
15 tháng 8 2016 lúc 8:38

Hỏi đáp Toán

Cao Hoài Phúc
Xem chi tiết
Phước Nguyễn
8 tháng 11 2015 lúc 9:04

Kết quả:

1. \(-\frac{2}{3}\)

2. \(3\)