\(4\left(\sin^4x+\cos^4x\right)+\sqrt{3}\sin4x=2\)
giải các pt
a) \(cos^2x+sin2x-1=0\)
b) \(\sqrt{3}sin2x+\:cos^4x-sin^4x=\sqrt{2}\)
c) \(\:cos^2x-sin^2x=\sqrt{2}.sin\left(x+\frac{\pi}{4}\right)\)
d) \(4\left(sin^4x+cos^4x\right)+\sqrt{3}.sin4x=2\)
e) \(4sinx.cosx.cos2x+cos4x=\sqrt{2}\)
\(\text{a) }cos^2x+sin2x-1=0\\ \Leftrightarrow2sinx\cdot cosx-sin^2x=0\\ \Leftrightarrow sinx\left(2cosx-sinx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=2cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=a\pi\\x=arctan\left(2\right)+b\pi\end{matrix}\right.\)
\(\text{b) }\sqrt{3}sin2x+cos^4x-sin^4x=\sqrt{2}\\ \Leftrightarrow\sqrt{3}sin2x+\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=\sqrt{2}\\ \Leftrightarrow\frac{\sqrt{3}}{2}\cdot sin2x+\frac{1}{2}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\frac{\pi}{4}\\ \\ \Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=\frac{\pi}{4}+a2\pi\\2x+\frac{\pi}{6}=\frac{3\pi}{4}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{24}+a\pi\\x=\frac{7\pi}{24}+b\pi\end{matrix}\right.\)
\(c\text{) }cos^2x-sin^2x=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\\ \Leftrightarrow cos^2x-sin^2x=\sqrt{2}\left(sinx\cdot\frac{\sqrt{2}}{2}+cosx\cdot\frac{\sqrt{2}}{2}\right)\\ \Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)=sinx+cosx\\ \Leftrightarrow\left[{}\begin{matrix}cosx-sinx=1\\sinx=-cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos^2x+\left(cosx-1\right)^2=1\\tanx=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\\tanx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+a\pi\\x=b2\pi\\x=\frac{3\pi}{4}=c\pi\end{matrix}\right.\)
\(d\text{) }4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow4\left(1-2sin^2x\cdot cos^2x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow-8sin^2x\cdot cos^2x+\sqrt{3}sin4x=-2\\ \Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\\ \Leftrightarrow cos4x-1+\sqrt{3}sin4x=-2\\ \Leftrightarrow\frac{1}{2}cos4x+\frac{\sqrt{3}}{2}sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\frac{\pi}{6}\cdot cos4x+cos\frac{\pi}{6}\cdot sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=sin\frac{-\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=\frac{-\pi}{6}+a2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{12}+\frac{a\pi}{2}\\x=\frac{\pi}{4}+\frac{b\pi}{2}\end{matrix}\right.\)
\(e\text{) }4sinx\cdot cosx\cdot cos2x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}cos4x=1\\ \Leftrightarrow sin4x\cdot cos\frac{\pi}{4}+cos4x\cdot sin\frac{\pi}{4}=1\\ \Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{16}+\frac{k\pi}{2}\)
1:\(\left(sin\dfrac{x}{2}+cos\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2\)
2: \(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
3: \(4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\)
4:\(cos5x-2sin3xcos2x-sinx=0\)
Tính đạo hàm:
1) \(y = \sin^2 \sqrt {4x+3}\)
2) \(y = \dfrac{3}{4}x^4 - \dfrac{34}{\sqrt{x}} + \pi\)
3) \(y = \sqrt{\dfrac{\sin4x}{\cos(x^2+2)}}\)
4) \(y = \dfrac{1}{\sqrt{\sin^2(6-x)+4x}}\)
5) \(y = x.\sin^2\left(\dfrac{2x-1}{4-x}\right)\)
6) \(y = \dfrac{4}{3}x^3 + \dfrac{3}{2\sqrt{x}} + \sqrt{2x}\)
7) \(y = \sqrt{\cot^3(x^2-1)} + \left(\dfrac{\sin2x}{\cos3x}\right)^4\)
8) \(y = \dfrac{\tan3x}{\cot^23x} - (\sin2x + \cos3x)^5\)
9) \(y = \cot^65x - \cos^43x + \sin3x\)
Coi như tất cả các biểu thức cần tính đạo hàm đều xác định.
1.
\(y'=2sin\sqrt{4x+3}.\left(sin\sqrt{4x+3}\right)'=2sin\sqrt{4x+3}.cos\sqrt{4x+3}.\left(\sqrt{4x+3}\right)'\)
\(=sin\left(2\sqrt{4x+3}\right).\dfrac{4}{2\sqrt{4x+3}}=\dfrac{2sin\left(2\sqrt{4x+3}\right)}{\sqrt{4x+3}}\)
2.
\(y'=3x^3+\dfrac{17}{x\sqrt{x}}\)
3.
\(y'=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\left(\dfrac{sin4x}{cos\left(x^2+2\right)}\right)'\)
\(=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\dfrac{4cos4x.cos\left(x^2+2\right)+2x.sin4x.sin\left(x^2+2\right)}{cos^2\left(x^2+2\right)}\)
4.
\(y'=-\dfrac{\left(\sqrt{sin^2\left(6-x\right)+4x}\right)'}{sin^2\left(6-x\right)+4x}=-\dfrac{\left[sin^2\left(6-x\right)+4x\right]'}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
\(=-\dfrac{2sin\left(6-x\right).\left[sin\left(6-x\right)\right]'+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}=-\dfrac{-2sin\left(6-x\right).cos\left(6-x\right)+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
\(=\dfrac{sin\left(12-2x\right)-4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
5.
\(y'=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).\left[sin\left(\dfrac{2x-1}{4-x}\right)\right]'\)
\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).cos\left(\dfrac{2x-1}{4-x}\right).\left(\dfrac{2x-1}{4-x}\right)'\)
\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+x.sin\left(\dfrac{4x-2}{4-x}\right).\dfrac{7}{\left(4-x\right)^2}\)
8.
\(y=tan^33x-\left(sin2x+cos3x\right)^5\)
\(\Rightarrow y'=3tan^23x.\left(tan3x\right)'-5\left(sin2x+cos3x\right)^4.\left(sin2x+cos3x\right)'\)
\(=\dfrac{9.tan^23x}{cos^23x}-5\left(sin2x+cos3x\right)^4.\left(2cos2x-3sin3x\right)\)
9.
\(y'=6cot^55x.\left(cot5x\right)'-4cos^33x.\left(cos3x\right)'+3cos3x\)
\(=-\dfrac{30.cot^55x}{sin^25x}+12cos^33x.sin3x+3cos3x\)
Chứng minh các đẳng thức:
\(cos^3xsinx-sin^3xcosx=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\dfrac{1}{4}\left(3+cos4x\right)\)
\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)
\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)
Giải phương trình:
\(4\left(Sin^4x+Cos^4x\right)+Sin4x-2=0\)
\(4\left(sin^4x+cos^4x\right)+sin4x-2=0\)
\(\Leftrightarrow4\left(1-2sin^2x.cos^2x\right)+2sin2x.cos2x-2=0\)
\(\Leftrightarrow2-2sin^22x+2sin2x.cos2x=0\)
\(\Leftrightarrow2\left(1-sin^22x+sin2x.cos2x\right)=0\)
\(\Leftrightarrow2\left(cos^22x+sin2x.cos2x\right)=0\)
\(\Leftrightarrow2cos2x\left(cos2x+sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x+sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2};x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\)
GIẢi các phương trình lượng giác
\(\left|\cos x\right|-\left|\sin x\right|-\cos2x\times\sqrt{1+\sin2x}\)
\(\sqrt{5\sin x+\cos2x}=-2\cos x\)
\(2\cos(x-45^0)-\cos(x-45^0)\times\sin2x-3\sin2x+4=0\)
\(\sin4x+2=\cos3x+4\sin x+\cos x\)
\(\cos^4x-\sin^4x=\left|\cos x\right|+\left|\sin x\right|\)
Giải các pt sau:
a) \(\cos^2x-\cos x=0\)
b) \(2\sin2x\) + \(\sqrt{2}\sin4x=0\)
c) \(8\cos^2x+2\sin x-7=0\)
d) \(4\cos^4x+\cos^2x-3=0\)
e) \(\sqrt{3}\tan x-6\cot x+\left(2\sqrt{3}-3\right)=0\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)
Vậy...
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)
\(\Leftrightarrow8sin^2x-2sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
Vậy...
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow cos2x=\dfrac{1}{2}\)
\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)
Vậy...
e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))
\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow-8sin^2x+2sinx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\)
Với \(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Với \(sinx=-\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left(4cos^2x-3\right)\left(cos^2x+1\right)=0\)
\(\Leftrightarrow4cos^2x-3=0\left(\text{Vì }cos^2x+1>0\right)\)
\(\Leftrightarrow cos^2x=\dfrac{3}{4}\)
\(\Leftrightarrow cosx=\pm\dfrac{\sqrt{3}}{2}\)
Với \(cosx=\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)
Với \(cosx=-\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{5\pi}{6}+k2\pi\)
\(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
=\(\sqrt{\left(1-cos^2x\right)^2+4\cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4\sin^2x}\)
=\(\sqrt{\cos^4x-2\cos^2x+1+4\cos^2x}+\sqrt{\sin^4x-2\sin^2x+1+4\sin^2x}\)
=\(\sqrt{\cos^4x+2\cos^2x+1}+\sqrt{\sin^4x+2\sin^2x+1}\)
=\(\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
=\(cos^2x+1+sin^2x+1=3\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=\cos^4x-\sin^4x+2\sin^2x+\tan2x.\cot2x\)
b) \(B=\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
c) \(C=3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
d) \(D=2\left(\sin^4x+\cos^4x+\sin^2x.\cos^2x\right)-\left(\sin^8x+\cos^8x\right)\)