\(4\left(sin^4x+cos^4x\right)+sin4x-2=0\)
\(\Leftrightarrow4\left(1-2sin^2x.cos^2x\right)+2sin2x.cos2x-2=0\)
\(\Leftrightarrow2-2sin^22x+2sin2x.cos2x=0\)
\(\Leftrightarrow2\left(1-sin^22x+sin2x.cos2x\right)=0\)
\(\Leftrightarrow2\left(cos^22x+sin2x.cos2x\right)=0\)
\(\Leftrightarrow2cos2x\left(cos2x+sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x+sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2};x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\)