a/
\(y=2cos\left(3x+\frac{\pi}{12}\right).cos\left(-\frac{\pi}{4}\right)-4\)
\(=\sqrt{2}cos\left(3x+\frac{\pi}{12}\right)-4\)
Do \(-1\le cos\left(3x+\frac{\pi}{12}\right)\le1\Rightarrow-\sqrt{2}-4\le y\le\sqrt{2}-4\)
\(y_{max}=\sqrt{2}-4\) khi \(sin\left(3x+\frac{\pi}{12}\right)=1\)
\(y_{min}=-\sqrt{2}-4\) khi \(sin\left(3x+\frac{\pi}{12}\right)=-1\)
b/
\(y=2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)+2=2sin\left(x+\frac{\pi}{6}\right)+2\)
Do \(-1\le sin\left(x+\frac{\pi}{6}\right)\le1\)
\(\Rightarrow0\le y\le4\)
c/
\(y=sin\left(4x-\frac{\pi}{3}\right)+sin\left(\frac{\pi}{3}\right)+5\)
\(=sin\left(4x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}+5\)
Do \(-1\le sin\left(4x-\frac{\pi}{3}\right)\le1\)
\(\Rightarrow4+\frac{\sqrt{3}}{2}\le y\le6+\frac{\sqrt{3}}{2}\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin2x+5\)
\(y=6-3sin^2x.cos^2x+3sin2x\)
\(y=-\frac{3}{4}sin^22x+3sin2x+6\)
\(y=\frac{3}{4}\left(sin2x+1\right)\left(5-sin2x\right)+\frac{9}{4}\ge\frac{9}{4}\)
\(y_{min}=\frac{9}{4}\) khi \(sin2x=-1\)
\(y=\frac{3}{4}\left(sin2x-1\right)\left(3-sin2x\right)+\frac{33}{4}\le\frac{33}{4}\)
\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)
e/
Đề câu này chắc chắn đúng chứ bạn?
f/
\(sin^4x+cos^4x=\frac{3}{4}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{3}{4}\)
\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{1}{2}sin^22x=0\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)