tìm x để căn thức sau có nghĩa
a \(\sqrt{1-x^2}\)
b \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)
1)Tìm x để căn thức sau có nghĩa
a)\(\sqrt{2x-4}\) b)\(\sqrt{\dfrac{-7}{4-x}}\)
2) Tính
A=\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}
\)
B=\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
Helpppp
1)
a) \(\sqrt{2x-4}\) có nghĩa khi:
\(2x-4\ge0\)
\(\Leftrightarrow2x\ge4\)
\(\Leftrightarrow x\ge\dfrac{4}{2}\)
\(\Leftrightarrow x\ge2\)
b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi
\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)
\(\Rightarrow4-x\le0\)
\(\Leftrightarrow x\ge4\)
2)
a) \(A=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}\right)^2+2\cdot2\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\cdot\sqrt{5}+2^2}\)
\(A=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(A=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)
\(A=\sqrt{5}+2-\sqrt{5}+2\)
\(A=4\)
\(B=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-5}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
\(B=\left(-\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}-\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(B=\left[-\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(B=\left(-\sqrt{7}-\sqrt{5}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)
\(B=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(B=-\left(7-5\right)\)
\(B=-2\)
Tìm x để các căn thức sau có nghĩa
a) \(\sqrt{-x-8}\)
b) \(\sqrt{\dfrac{1}{x^2-2x+1}}\)
c) \(\dfrac{\sqrt{x-2}}{5-x}\)
d) \(\sqrt{x^2+3}\)
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
tìm điều kiện để các biểu thức sau có nghĩa
a, \(\sqrt{-x^5}\)
b, \(\sqrt{-\left|x-2\right|}\)
c, \(\sqrt{\dfrac{10}{\left(x-3\right)^2}}\)
em đang cần gấp ạ
a) Biểu thức có nghĩa \(\Leftrightarrow-x^5\ge0\)
\(\Leftrightarrow x^5\le0\) \(\Leftrightarrow x\le0\)
Vậy với \(x\le0\) thì biểu thức \(\sqrt{-x^5}\) có nghĩa
b) Biểu thức có nghĩa \(\Leftrightarrow-\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|\le0\) (1)
Vì \(\left|x-2\right|\ge0\) \(\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left|x-2\right|=0\) \(\Leftrightarrow x-2=0\) \(\Leftrightarrow x=2\)
Vậy với \(x=2\) thì biểu thức \(\sqrt{-\left|x-2\right|}\) có nghĩa
c) \(ĐKXĐ:x\ne3\)
Biểu thức có nghĩa \(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}\ge0\)
\(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}>0\) \(\Leftrightarrow\left(x-3\right)^2>0\) ( do \(10>0\) )
Vì \(\left(x-3\right)^2\ge0\) \(\forall x\)
\(\Rightarrow\) Để \(\left(x-3\right)^2>0\) thì \(x-3\ne0\) \(\Leftrightarrow x\ne3\)
So sánh với ĐKXĐ ta thấy \(x\ne3\) thỏa mãn
Vậy với \(x\ne3\) thì biểu thức \(\sqrt{\dfrac{10}{\left(x-3\right)^2}}\) có nghĩa
mọi người giúp em với em cảm ơn ạ
Tìm điều kiện để các biểu thức sau có nghĩa
a, \(\sqrt{x-2}-\sqrt{4-x}\)
b, \(\dfrac{1}{\sqrt{x+1}-1}\)
c, \(\sqrt{x^2-4x+3}\)
d, \(\sqrt{-x^5}\)
e, \(\sqrt{\dfrac{x-3}{2-x}}\)
g, \(\sqrt{-\left|x-2\right|}\)
h, \(\sqrt{4x^2-4x+1}\)
Mình đang cần gấp, sắp phải nộp rồi
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-2x}\)
b. \(\sqrt{\dfrac{-5}{2x+1}}\)
* Giải phương trình
a. \(\sqrt{\left(2x-3\right)^2}=5\)
b. \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
Bài 1 :
a, ĐKXĐ : \(3-2x\ge0\)
\(\Rightarrow x\le\dfrac{3}{2}\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\dfrac{1}{2}\)
Vậy ...
a,ĐKXĐ \(3-2\text{x}>0\Leftrightarrow-2x>-3\Leftrightarrow\text{x}< \dfrac{3}{2}\)
b,\(\dfrac{-5}{2x+1}>0\Leftrightarrow2x+1< 0\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)
( bây giờ mình bận nên làm trước 2 bài =))
a, \(x\le\dfrac{3}{2}\)
b, \(x< -\dfrac{1}{2}\)
*a, \(\sqrt{\left(2x-3\right)^2}=5=>|2x-3|=5=>\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
b, \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
\(< =>3\sqrt{x+1}+2\sqrt{x+1}-4\sqrt{x+1}=3\)\(\left(x\ge-1\right)\)
\(< =>\sqrt{x+1}=3=>x+1=9=>x=8\left(tm\right)\)
a,\(\sqrt{5-4x}\)
b,\(\sqrt{\left(x+1\right)^2}\)
c,\(\sqrt{\dfrac{-1}{x-2}}\)
giúp mình tìm điều kiện để tìm các căn thức sau có nghĩa
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)
\(\Rightarrow\) Với mọt giá trị của x
\(c,ĐK:\dfrac{-1}{x-2}\ge0\)
Vì \(-1< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)
a)
Căn thức có nghĩa thì:
\(5-4x\ge0\\ \Leftrightarrow4x\le5\\ \Rightarrow x\le\dfrac{5}{4}\)
b)
Để căn thức có nghĩa thì:
\(\left(x+1\right)^2\ge0\) (luôn đúng)
Vậy căn thức có nghĩa với mọi giá trị x.
c)
Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}-\dfrac{1}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x\ne2\end{matrix}\right.\\ \Rightarrow x< 2\)
Tìm x để các căn thức sau có nghĩa
a)\(\sqrt{\dfrac{1}{x-3}}\)
Tìm điều kiện để các căn thức sau có nghĩa
a)\(\sqrt{x^2+1}\)
b)\(\sqrt{\dfrac{-7}{8-10x}}\)
c)\(\sqrt{\dfrac{24-6x}{-7}}\)
Giúp mik nhanh vs ạ
Mik đg cần gấp
\(a,ĐK:x\in R\)
\(b,ĐK:\dfrac{-7}{8-10x}\ge0\Leftrightarrow8-10x< 0\left(-7< 0\right)\Leftrightarrow x>\dfrac{4}{5}\)
\(c,ĐK:\dfrac{24-6x}{-7}\ge0\Leftrightarrow24-6x\le0\left(-7< 0\right)\Leftrightarrow x\ge4\)
a:ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(x>\dfrac{4}{5}\)
c: ĐKXĐ: x>4
tìm x để các biểu thức sau có nghĩa
a. \(\sqrt{2x-7}\)
b. \(\sqrt{-3x+4}\)
c. \(\sqrt{1+x^2}\)
\(a,f\left(x\right)=\sqrt{2x-7}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow2x-7\ge0\Leftrightarrow x\ge\dfrac{7}{2}\)
\(b,f\left(x\right)=\sqrt{-3x+4}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
\(c,f\left(x\right)=\sqrt{1+x^2}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow1+x^2\ge0\)
Mà \(1+x^2\ge0\) với mọi x \( \left(x^2\ge0\Rightarrow x^2+1\ge0\right)\)
\(\sqrt{1+x^2}\) có nghĩa với mọi x