Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Akai Haruma
11 tháng 9 2021 lúc 17:55

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$

\(\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{x-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Ling ling 2k7
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 10:31

Hình như sai đề :_:

*Sửa lại:

`(x-2sqrtx+1)/((sqrtx-1)(sqrtx+1))`

`=(sqrtx-1)^2/((sqrtx-1)(sqrtx+1))`

`=(sqrtx-1)/(sqrtx+1)`

Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 11:39

Sửa đề: \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

Ta có: \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

nguyen ngoc anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2021 lúc 18:17

Ta có: \(P=\sqrt{\left(1+x\right)^2}+\sqrt{\left(1-x\right)^2}\)

\(=\left|1+x\right|+\left|1-x\right|\)

\(=1+x+\left|1-x\right|\)

\(=\left[{}\begin{matrix}1+x+1-x\left(x\le1\right)\\1+x+x-1\left(x>1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}2\\2x\end{matrix}\right.\)

Tuyết Linh Linh
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 20:22

Lời giải:

a) ĐK: $x\geq 0; y\geq 0; x\neq y$

\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$

$\Rightarrow A< 1$

 

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

thu dinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2021 lúc 13:45

Ta có: \(P=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\sqrt{x}+1\)

do khanh hoa
Xem chi tiết
anonymous
17 tháng 12 2020 lúc 11:54

Ta có:

\(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left[\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right]\\ =\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\\ =2:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Miinhhoa
17 tháng 12 2020 lúc 12:05

P=\(\left(\dfrac{\sqrt{x^3}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)

P=\(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left[\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right]\)

P=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

P=\(\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

P=\(\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

nguyenyennhi
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 8:42

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 8:41

\(=\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

Võ Phạm Hồng Linh
Xem chi tiết
Nguyễn Ngọc Huy Toàn
29 tháng 5 2022 lúc 18:59

\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\);\(ĐK:x\ge0;x\ne1\)

\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(A=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-2\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(A=\left(\dfrac{-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

 

 

Kudo Shinichi
29 tháng 5 2022 lúc 19:00

\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right).\left(\sqrt{x-1}\right)\left(đk:x\ne1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right).\left(\sqrt{x}-1\right)\)

\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\dfrac{-\sqrt{x}}{\sqrt{x}+1}.\left(\sqrt{x}-1\right)\\ A=\dfrac{-x+\sqrt{x}}{\sqrt{x}+1}\)

Duong Tue Tam
Xem chi tiết
YangSu
16 tháng 6 2023 lúc 10:34

\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x+6\sqrt{x}-\left(x-1\right)\)

\(=3x+6\sqrt{x}-x+1\)

\(=2x+6\sqrt{x}+1\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)

\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)

\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)

\(=-x+8\sqrt{x}+1\)

\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)

\(=3x-3\sqrt{x}-2+x-1\)

\(=4x-3\sqrt{x}-3\)

\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(=x-9-\left(2x-3\sqrt{x}-2\right)\)

\(=x-9-2x+3\sqrt{x}+2\)

\(=-x+3\sqrt{x}-7\)

\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)

\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)

\(=x-4-4x-6\sqrt{x}+4\)

\(=-3-6\sqrt{x}\)