Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
A Lan
Xem chi tiết
Kinder
Xem chi tiết
Hồng Phúc
31 tháng 7 2021 lúc 0:14

\(P=sin^{10}x+cos^{10}x-\dfrac{sin^6x+cos^6x}{sin^22x+4cos^22x}\)

\(=sin^{10}x+cos^{10}x-\dfrac{\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)}{4-3sin^22x}\)

\(=sin^{10}x+cos^{10}x-\dfrac{1-\dfrac{3}{4}sin^22x}{4-3sin^22x}\)

\(=sin^{10}x+cos^{10}x-\dfrac{1}{4}\)

\(\le sin^2x+cos^2x-\dfrac{1}{4}=\dfrac{3}{4}\)

\(maxP=\dfrac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}sin^{10}x=sin^2x\\cos^{10}x=cos^2x\end{matrix}\right.\Leftrightarrow x=\dfrac{k\pi}{2}\)

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 16:56

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

hằng hồ thị hằng
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 20:14

1.

\(\Leftrightarrow3sin^22x+1-sin^22x=3sin2x\)

\(\Leftrightarrow2sin^22x-3sin2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 20:17

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 20:23

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:33

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:35

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 7:57

1.

\(\Rightarrow4cos^3x.cos3x+4sin^3x.sin3x=\sqrt{2}\)

\(\Leftrightarrow\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x=\sqrt{2}\)

\(\Leftrightarrow3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+cos6x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+4cos^32x-3cos2x=\sqrt{2}\)

\(\Leftrightarrow4cos^32x=\sqrt{2}\)

\(\Leftrightarrow cos2x=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{4}+k2\pi\\2x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

byun aegi park
Xem chi tiết
Lê _Ngọc_Như_Quỳnh
19 tháng 8 2019 lúc 20:20
https://i.imgur.com/KATLCup.jpg
Lê _Ngọc_Như_Quỳnh
19 tháng 8 2019 lúc 20:25
https://i.imgur.com/C3DgdmP.jpg
Lê _Ngọc_Như_Quỳnh
19 tháng 8 2019 lúc 20:33
https://i.imgur.com/cJUYRGv.jpg
Dương Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 6 2021 lúc 17:07

1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)

2.\(sin^22x+cos^23x=1\)

\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)

\(\Leftrightarrow cos6x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)

Vậy...

3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)

\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)

\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Vậy...

4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)

\(\Leftrightarrow cos2x+cos4x=1+cos6x\)

\(\Leftrightarrow2cos3x.cosx=2cos^23x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...

Ryan Park
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2019 lúc 11:04

\(A=\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)+m\left(sin^4x+cos^4x\right)+\left(m+1\right)sin^22x\)

\(=\left(sin^2x+cos^2x\right)^2-3sin^2x.cos^2x+m\left[\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right]+\left(m+1\right)sin^22x\)

\(=1-\frac{3}{4}sin^22x+m\left(1-\frac{1}{2}sin^22x\right)+\left(m+1\right)sin^22x\)

\(=m+1+\left(-\frac{3}{4}-\frac{m}{2}+m+1\right)sin^22x\)

\(=m+1+\left(\frac{m}{2}+\frac{1}{4}\right)sin^22x\)

Để biểu thức ko phụ thuộc x \(\Rightarrow\frac{m}{2}+\frac{1}{4}=0\Rightarrow m=-\frac{1}{2}\)