Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le thi khanh huyen
Xem chi tiết
Nguyễn Hưng Phát
5 tháng 11 2018 lúc 19:13

\(VT^2\le2.\left(7-x+x-5\right)=2.2=4\Rightarrow VT\le2\)

Mà \(VP=x^2-12x+38=x^2-2.6.x+36+2=\left(x-6\right)^2+2\ge2\)

\(\Rightarrow VT\le VP\).Dấu "=" xảy ra khi \(x=6\)

tth_new
5 tháng 11 2018 lúc 19:14

ĐKXĐ: \(\hept{\begin{cases}7-x\ge0\\x-5\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le7\\x\ge5\end{cases}\Leftrightarrow}5\le x\le7\)

Do khoảng cách các giá trị của x nhỏ nên ta thay lần lượt các giá trị x vào phương trình rồi chọn những giá trị nào thỏa mãn. Bước này dễ. Bạn tự làm. (mình lười quá rồi man))

Nguyễn Tất Đạt
5 tháng 11 2018 lúc 19:15

\(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\) (ĐKXĐ: \(7\ge x\ge5\))

\(\Leftrightarrow2x^2-24x+76=2\sqrt{7-x}+2\sqrt{x-5}\)

\(\Leftrightarrow2x^2-24x+72+\left(7-x-2\sqrt{7-x}+1\right)+\left(x-5-2\sqrt{x-5}+1\right)=0\)

\(\Leftrightarrow2\left(x-6\right)^2+\left(\sqrt{7-x}-1\right)^2+\left(\sqrt{x-5}-1\right)^2=0\)

Dễ thấy \(2\left(x-6\right)^2\ge0;\left(\sqrt{7-x}-1\right)^2\ge0;\left(\sqrt{x-5}-1\right)^2\ge0\)

Do đó: \(\hept{\begin{cases}x-6=0\\\sqrt{7-x}-1=0\\\sqrt{x-5}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\7-x=1\\x-5=1\end{cases}}\Rightarrow x=6\)(t/m ĐKXĐ)

Vậy PT trên có 1 nghiệm duy nhất là x=6.

Phạm Thị Hằng
Xem chi tiết
Phạm Thị Hằng
23 tháng 8 2017 lúc 16:18

a) \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)

ĐKXĐ : \(5\le x\le7\)

Bình phương vế trái ta được:

\(VT^2=7-x+x-5+2\sqrt{\left(7-x\right)\left(x-5\right)}\)

       \(=2+2\sqrt{-x^2+12x-35}\)

       \(=2+2\sqrt{1-\left(x^2-12x+36\right)}\)

       \(=2+2\sqrt{1-\left(x-6\right)^2}\le2+2.1=4\)

 => \(VT\le2\) \(\left(VT\ge0\right)\)  (1)

\(VP=x^2-12x+38=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\)  (2)

Từ (1) và (2) suy ra VT=VP=2

=> x=6 (thỏa mãn ĐKXĐ)

Vậy ... 

Phạm Thị Hằng
23 tháng 8 2017 lúc 16:29

b)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^2+2x-3}=4-2x\)

ĐKXĐ : \(x\ge1\)

Với ĐKXĐ ta luôn có: \(VT=\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{4}=2\) (1)

\(VP=4-2x=2\left(2-x\right)\le2\) (2)

Từ (1) và (2) suy ra VT = VP = 2

=> x=1 ( Thỏa mãn ĐKXĐ )

Vậy ...

Phạm Thị Hằng
23 tháng 8 2017 lúc 16:30

Câu b) mình làm thấy sai sai ấy. Bạn nào biết vào giải giúp với :) cảm ơn :)

Trịnh Hải Yến
Xem chi tiết
Tuấn
20 tháng 9 2016 lúc 22:05

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 23:09

a) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)

\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)

\(\Leftrightarrow19\sqrt{2x}=38\)

\(\Leftrightarrow\sqrt{2x}=2\)

\(\Leftrightarrow2x=4\)

hay x=2(thỏa ĐK)

b) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)

\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)

\(\Leftrightarrow\sqrt{3x}=2\)

\(\Leftrightarrow3x=4\)

hay \(x=\dfrac{4}{3}\)

c) ĐKXĐ: \(x\ge5\)

Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

hay x=9

hnamyuh
2 tháng 7 2021 lúc 23:13

a)

\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)

b)

\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)

c)

\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)

illumina
Xem chi tiết
2611
20 tháng 5 2023 lúc 20:12

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

Trần Bảo Bảo
Xem chi tiết
Neet
13 tháng 7 2017 lúc 14:32

b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))

\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)

\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)

c) bunyalovsky:

\(VT^2\le2\left(7-x+x-5\right)=4\)

\(\Leftrightarrow VT\le2\)

\(VF=\left(x-6\right)^2+2\ge2\)

Dấu = xảy ra khi x=6

PTTD
Xem chi tiết
hưng phúc
17 tháng 9 2021 lúc 20:44

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
17 tháng 9 2021 lúc 21:54

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

nood
Xem chi tiết
Vui lòng để tên hiển thị
24 tháng 9 2023 lúc 19:26

`a, <=> 5/3 . 3sqrt(x^2+2) + 3/2.2sqrt(x^2+2)-7sqrt6=sqrt(x^2+2)`

`= (5+3-1)sqrt(x^2+2)=7sqrt6`

`<=> 7sqrt(x^2+2)=7sqrt6`.

`<=> x^2+2=36`.

`<=> x^2=34`.

`<=> x=+-sqrt(34)`.

Vậy...

`b, sqrt(4x^2-12x+9)-6=0`

`<=> |2x-3|=6`.

`@ x >=3/2 <=> 2x-3=6.`

`<=> x=9/2 (tm)`.

`@x <3/2 <=> 3-2x=6`

`<=> 2x=-3`

`<=> x=-3/2.`

Vậy...

....
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 10:34

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

Akai Haruma
30 tháng 7 2021 lúc 10:39

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$

Akai Haruma
30 tháng 7 2021 lúc 10:42

f.

$x^2-(\sqrt{2}+\sqrt{8})x+4=0$

$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$

$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$

$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$

$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$

$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$

g.

$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$

$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$

$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$

$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$

$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$