\(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\) (ĐKXĐ: \(5\le x\le7\))
Với \(5\le x\le7\) thì VT luôn lớn hơn 0
Áp dụng BĐT (a+b)2\(\le2\left(a^2+b^2\right)\). Dấu "\(=\)" xảy ra \(\Leftrightarrow a=b\) với VT ta có:
\(VT^2=\left(\sqrt{7-x}+\sqrt{x-5}\right)^2\le2\left(7-x+x-5\right)\)
\(\Leftrightarrow VT^2\le2.2=4\)
\(\Leftrightarrow0< VT\le2\) (1)
CÓ : VP\(=x^2-12x+38=\left(x-6\right)^2+2\ge2\forall x\)(2)
(1) và (2)\(\Rightarrow VT=VP=2\)
Dấu"\(=\)" \(\Leftrightarrow\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\left(t/m\right)\)
Kl: x\(=6\) là nghiệm của pt
ĐKXĐ: ...
Ta có:
\(VT=\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2\left(7-x+x-5\right)}=2\)
\(VP=\left(x-6\right)^2+2\ge2\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{7-x}=\sqrt{x-5}\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)