Tính:
\(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
a, \(\sqrt{9\cdot\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
b,\(\sqrt{9\left(3-a\right)^2}vớia>3\)
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)
b)\(\sqrt{9\left(3-a\right)^2}=3\left|3-a\right|=3\left(a-3\right)\)(vì a > 3)
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(\sqrt{9}\right)^2}-\sqrt{\left(\sqrt{17}\right)^2}\)
\(\sqrt{9\left(3-a\right)^2}\)
\(=\sqrt{3^2\left(3-a\right)^2}\)
\(=3\left(3-a\right)\)
\(=3-3a\)
\(2+\sqrt{17-4\cdot\sqrt{9+4\cdot\sqrt{5}}}\)
\(2+\sqrt{17-4.\sqrt{9+4.\sqrt{5}}}\)
\(=2+\sqrt{17-4.\sqrt{4+4.\sqrt{5}+5}}\)
\(=2+\sqrt{17-4.\sqrt{2^2+2.2.\sqrt{5}+\sqrt{5}^2}}\)
\(=2+\sqrt{17-4.\sqrt{\left(2+\sqrt{5}\right)^2}}\)
\(=2+\sqrt{17-4.\left(2+\sqrt{5}\right)}\)
\(=2+\sqrt{17-8+4.\sqrt{5}}\)
\(=2+\sqrt{9+4.\sqrt{5}}\)
\(=2+\sqrt{4+4.\sqrt{5}+5}\)
\(=2+\sqrt{2^2+2.2.\sqrt{5}+\sqrt{5}^2}\)
\(=2+\sqrt{\left(2+\sqrt{5}\right)^2}\)
\(=2+2+\sqrt{5}\)
'\(=4+\sqrt{5}\)
Chứng minh
a)\(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}=8\)
b)(\(\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}\)
a.
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\\ =\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\\ =\sqrt{81-17}\\ =\sqrt{64}\\=8\)
\(a.VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=8=VP\)
\(b.\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=3\sqrt{3}-\sqrt{2}\) ( thiếu đề )
\(VT=\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=\dfrac{1}{3-2\sqrt{3}.\sqrt{2}+2}+\dfrac{2}{3+2\sqrt{3}.\sqrt{2}+2}=\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}+2\sqrt{3}-2\sqrt{2}=3\sqrt{3}-\sqrt{2}=VP\)
Giải phương trình sau:
a, \(\sqrt{9-2\sqrt{14}}+\sqrt{2}\)
b, \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
c,\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
Không hiểu sao cứ gửi ảnh nó lại bị lộn xộn nên bạn cố nhìn nhé
( ͡°( ͡° ͜ʖ( ͡° ͜ʖ ͡°)ʖ ͡°) ͡°)
1. Thực hiện phép tính
a. \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
b. \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
a: \(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)
b: \(=\sqrt{81-17}=8\)
Tính:
\(\sqrt{17-\sqrt{33}}\cdot\sqrt{17+\sqrt{33}}\)
\(\sqrt{17-\sqrt{33}}\cdot\sqrt{17+\sqrt{33}}\)
\(=\sqrt{\left(17-\sqrt{33}\right)\left(17+\sqrt{33}\right)}\)
\(=\sqrt{17^2-\left(\sqrt{33}\right)^2}\)
\(=\sqrt{289-33}\)
\(=\sqrt{256}\)
\(=\sqrt{16^2}\)
\(=16\)
Bài 1:Rút gọn
a,\(\sqrt{117,5^2-26,5^2-1440}\)
b,\(\sqrt{146,5^2-109,5^2+27,256}\)
c,\(\sqrt{9-\sqrt{17}\cdot\sqrt{9+\sqrt{17}}}\)
giải phương trình
\(x+\sqrt{17-x^2}+x\cdot\sqrt{17-x^2}=9\)
Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)
\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)
\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)
thay vào pt
\(t+\frac{t^2-17}{2}=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)
\(\Rightarrow x+\sqrt{17-x^2}=5\)
\(\Leftrightarrow\sqrt{17-x^2}=5-x\)
Với \(x< \sqrt{17}\) bình 2 vế ta có:
\(17-x^2=x^2-10x+25\)
\(\Leftrightarrow2x^2-10x+8=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)
dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)
rút gọn K
K = \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}-\sqrt{\left(-8\right)^2}\)
\(K=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}-\sqrt{\left(-8\right)^2}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}-\sqrt{\left(-8\right)^2}\)
\(=\sqrt{81-17}-8=\sqrt{64}-8=8-8=0\)