\(cos2x+cosx-\frac{\sqrt{2}}{2}=0\)
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
3.
\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)
Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm
Giải các phương trình sau:
a, \(\sqrt{2}\) sin \(\left(2x+\frac{\pi}{4}\right)\)=3sinx+cosx+2
b, 1+sinx+cosx+sin2x+cos2x=0
c, (2cosx-1)(2sinx+cosx)=sin2x-sinx
d, cos3x+cos2x-cosx-1=0
a.
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)
\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình
\(\left(\sqrt{1-cosx}+\sqrt{cosx}\right)cos2x=\frac{1}{2}sin4x\)
ĐKXĐ: \(cosx\ge0\)
\(\Leftrightarrow\left(\sqrt{1-cosx}+\sqrt{cosx}\right)cos2x=sin2x.cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\left(1\right)\\\sqrt{1-cosx}+\sqrt{cosx}=sin2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2cos^2x-1=0\)
\(\Leftrightarrow cos^2x=\frac{1}{2}\Rightarrow cosx=\frac{\sqrt{2}}{2}\)
\(\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)
Xét (2): ta có \(VP=sin2x\le1\)
\(VT=\sqrt{1-cosx}+\sqrt{cosx}\ge\sqrt{1-cosx+cosx}=1\ge VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}cosx=0\\sin2x=1\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=1\\sin2x=1\end{matrix}\right.\end{matrix}\right.\) (đều vô nghiệm)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
giải phương trình lượng giác sau
\(\left(\sqrt{1-cosx}+\sqrt{cosx}\right)cos2x=\frac{1}{2}sin4x\)
ĐKXĐ: \(cosx\ge0\)
\(\Leftrightarrow\left(\sqrt{1-cosx}+\sqrt{cosx}\right)cos2x=sin2x.cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\sqrt{1-cosx}+\sqrt{cosx}=sin2x\end{matrix}\right.\)
TH1: \(cos2x=0\Rightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
Kết hợp điều kiện \(cosx\ge0\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
TH2: \(\sqrt{1-cosx}+\sqrt{cosx}=sin2x\)
Ta có \(VT=\sqrt{1-cosx}+\sqrt{cosx}\ge\sqrt{1-cosx+cosx}=1\)
\(VP=sin2x\le1\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}sin2x=1\\\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow ptvn\)
Giải phương trình sau
1.\(cos2x-\sqrt{3}sin2x=\sqrt{2}\)
2.\(4sin^2\frac{x}{2}-3\sqrt{3}sinx-2cos^2\frac{x}{2}=4\)
3. \(2\left(sinx+cosx\right)=4sinxcosx+1\)
4. \(cosx-sinx-2sin2x-1=0\)
\(5.\sqrt{3}sin2x+cos2x=2sinx\)
6. \(9sin^2x-5cos^2x-5sinx+4=0\)
7.\(cos^2x-\sqrt{3}sin2x=1+sinx\)
8.\(\frac{3}{cos^2x}=3+2tan^2x\)
1.
\(\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+k\pi\\x=-\frac{7\pi}{24}+k\pi\end{matrix}\right.\)
2.
\(2\left(1-cosx\right)-3\sqrt{3}sinx-\left(1+cosx\right)=4\)
\(\Leftrightarrow cosx+\sqrt{3}sinx=-1\)
\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=-\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{2\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
3.
\(4sinx.cosx-2sinx+1-2cosx=0\)
\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
4.
\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)
Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
5.
\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
6.
\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)
\(\Leftrightarrow14sin^2x-5sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)
giải phương trình đối với sin x và cosx
1) 3sinx-4cosx=5
2) \(\sqrt{3}cos2x+sin2x+2sin\left(2x-\frac{\pi}{6}\right)=2\sqrt{2}\)
3) \(cosx+\sqrt{3}sinx+2cos\left(2x+\frac{\pi}{3}\right)=0\)
4) \(2cos\left(2x+\frac{\pi}{6}\right)+4sinxcosx-1=0\)
5) \(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
giải các pt
a) \(sin2x-2\sqrt{3}cos^2x=4cosx\)
b) \(sin^2x-3cos^2x=sinx-\sqrt{3}cosx\)
c) \(sin6x\left(cos3x-1\right)-sin6x.sin3x=0\)
d) \(\left(sin2x-cos2x\right)^2-3\left(sin2x-cos2x\right)-4=0\)
e) \(\frac{sin2x+sin6x}{cos2x}-2cos4x=2\sqrt{2}\)
a/
\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x-4cosx=0\)
\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\sinx-\sqrt{3}cosx=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=1\)
\(\Leftrightarrow x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{5\pi}{6}+k2\pi\)
b/
\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)=sinx-\sqrt{3}cosx\)
\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{3}cosx\left(1\right)\\sinx+\sqrt{3}cosx=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
\(\left(2\right)\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sin6x\left(cos3x-1-sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\Rightarrow x=\frac{k\pi}{6}\\cos3x-sin3x=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin3x-cos3x=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\3x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\frac{\pi}{2}+\frac{k2\pi}{3}\end{matrix}\right.\)
sinx + sin2x + sin3x = 1 + cosx + cos2x
cos3x + sin3x + cosx - sinx = \(\sqrt{2}\)cos2x
sinx + sin2x + sin3x = cosx + cos2x + cos3x
b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)
c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)
\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)