Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải các pt

a) \(sin2x-2\sqrt{3}cos^2x=4cosx\)

b) \(sin^2x-3cos^2x=sinx-\sqrt{3}cosx\)

c) \(sin6x\left(cos3x-1\right)-sin6x.sin3x=0\)

d) \(\left(sin2x-cos2x\right)^2-3\left(sin2x-cos2x\right)-4=0\)

e) \(\frac{sin2x+sin6x}{cos2x}-2cos4x=2\sqrt{2}\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:48

a/

\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x-4cosx=0\)

\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\sinx-\sqrt{3}cosx=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{5\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:51

b/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)=sinx-\sqrt{3}cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{3}cosx\left(1\right)\\sinx+\sqrt{3}cosx=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

\(\left(2\right)\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:54

c/

\(\Leftrightarrow sin6x\left(cos3x-1-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\Rightarrow x=\frac{k\pi}{6}\\cos3x-sin3x=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin3x-cos3x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\3x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\frac{\pi}{2}+\frac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:56

d/

Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:58

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\)

\(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\)

\(\Leftrightarrow sin4x-cos4x=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Julian Edward
Xem chi tiết
hello hello
Xem chi tiết
tran duc huy
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
gấu béo
Xem chi tiết