giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)
\(\dfrac{\sqrt{2}\left(sinx-cox\right)^2\left(1+2sin2x\right)}{sin3x+sin5x}=1-tanx\)
\(sin\left(2x-\dfrac{\pi}{4}\right)cos2x-2\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
(sin2x+cos2x)cosx+2cos2x -sinx=0
sinx + cosxsin2x + \(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
giải phương trình:
1) \(2\sqrt{2}cos^3x\left(x-\frac{\pi}{4}\right)-3cosx-sinx=0\)
2) \(tanx.sin^2x-2sin^2x=3\left(cos2x+sinxcosx\right)\)
3) \(2sin^3x=cosx\)
4) \(6sinx-2cos^3x=\frac{5sin4xcosx}{2cos2x}\)
\(cosx-2cos3x=1+\sqrt{3}sinx\)
\(sinx+sinx\left(x+\dfrac{\pi}{3}\right)+sin4x=sin\left(2x-\dfrac{\pi}{3}\right)\)
\(\left(1-\dfrac{1}{2sinx}\right)cos^22x=2sinx-3+\dfrac{1}{sinx}\)
( sinx -2cosx)cos2x + sinx = (cos4x - 1)cosx +\(\dfrac{cos2x}{2sinx}\)
\(\left(\dfrac{cos4x+sin2x}{cos3x+sin3x}\right)^2=2\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+3\)
giải các phương trình sau: phương trình đối xứng
a,\(sin2x+\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)
b, \(\left(sinx-cosx\right)^2-\left(\sqrt{2}+1\right)\left(sinx-cosx\right)+\sqrt[]{2}=0\)
Câu 1: Giải các phương trình sau:
a, \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)+\(\sqrt{3}cosx=2\)
b, \(\frac{\left(1-2sinx\right).cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)
c, 5sinx-2=3(1-sinx).tan2x
d, \(\frac{2\left(sin^6x+cos^6\right)}{\sqrt{2}-2sinx}=0\)
e, cos23x.cos2x-cos2x=0
Câu 2: giải các phương trình sau:
a, sinx+cosx.sin2x+\(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
b, \(\frac{\left(2-\sqrt{3}\right).cosx-2sin2\left(\frac{x}{2}-\frac{\pi}{4}\right)}{2cosx-1}\)
c, 8sin22x.cos2x=\(\sqrt{3}sin2x+cos2x\)
d, sin3x- \(\sqrt{3}cos^3x=sinxcos^2x-\sqrt{3}sin^2xcosx\)
Giải các phương trình:
1, cosx - \(\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
2, sin5x +cos5x = \(\sqrt{2}cos13x\)
3, \(\left(3cosx-4sinx-6\right)^2+2=-3\left(3cosx-4sinx-6\right)\)
giải phương trình sau
\(\sqrt{3}sinx+cosx+2cos\left(x-\dfrac{\pi}{3}\right)=2\)
cos2x-√3 sin2x=sin3x+1
3sin2x+4cos2x+5cos2003x=0
√3sin(x-\(\frac{\pi}{3}\))\(+sin\left(x+\frac{\pi}{6}\right)-2sin1972x=0\)
\(\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\sqrt{6}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)=2sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-2sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)