Giải phương trình: \(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\)
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Nãy mình tìm được một cách giải tương tự cho câu 2.
PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm bằng 1.
\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)
\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)
\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)
\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)
Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)
Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))
Giải các phương trình và hệ phương trình sau :
1. \(3x^2-7x+2=0\)
2. \(x^4-5x+4=0\)
3. \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{matrix}\right.\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
giải phương trình
\(\sqrt{x-3}+\sqrt{5-x}-2x^2+7x+2=0\)
ĐKXĐ: \(3\le x\le5\)
\(2x^2-7x-2-\sqrt{x-3}-\sqrt{5-x}=0\)
\(\Leftrightarrow2x^2-7x-4+1-\sqrt{x-3}+1-\sqrt{5-x}=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)-\dfrac{x-4}{1+\sqrt{x-3}}+\dfrac{x-4}{1+\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1-\dfrac{1}{1+\sqrt{x-3}}+\dfrac{1}{1+\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+\dfrac{\sqrt{x-3}}{1+\sqrt{x-3}}+\dfrac{1}{1+\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow x-4=0\) (ngoặc to luôn dương)
\(\Leftrightarrow x=4\)
Giải phương trình:
a) \(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\).
b) \(x^2-4x=\sqrt{x+2}\), với \(x\ge2\).
c) \(x^2-7x+2\left(x-2\right)\sqrt{x+1}+1=0\).
a:
ĐKXĐ: x>=5/2
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)
=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
=>\(2\sqrt{2x-5}+4=14\)
=>\(\sqrt{2x-5}=5\)
=>2x-5=25
=>2x=30
=>x=15
b: \(x^2-4x=\sqrt{x+2}\)
=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0
=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0
=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0
=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)
Giải các phương trình sau:
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
\(\begin{array}{l} \Rightarrow {x^2} - 7x = - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{5}\) và \(x = \frac{1}{2}\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x = - \frac{3}{5}\) thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = - \frac{3}{5}\)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8} = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)
Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)
\( \Rightarrow x = - \frac{2}{3}\) và \(x = 1\)
Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1} = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn
Vậy nghiệm của phương trình trên là \(x = - \frac{2}{3}\) và \(x = 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{2}\) và \(x = 7\)
Thay hai nghiệm \(x = - \frac{3}{2}\) và \(x = 7\) vào phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình
Vậy phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) vô nghiệm
giải hệ phương trình : \(\hept{\begin{cases}y^2-y\left(\sqrt{x-1}+1\right)+\sqrt{x-1}=0\\x^2+y-\sqrt{7x^2-3}=0\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}y^2-y\left(\sqrt{x-1}+1\right)+\sqrt{x-1}=0\\x^2+y-\sqrt{7x^2-3}=0\end{cases}}\)
ĐK: \(x\ge1\)
Từ pt (1) <=> \(\left(y^2-y\sqrt{x-1}\right)-\left(y-\sqrt{x-1}\right)=0\)
<=> \(y\left(y-\sqrt{x-1}\right)-\left(y-\sqrt{x-1}\right)=0\)
<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\)
<=> \(\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)
+) Với y - 1 =0 <=> y = 1 thay vào pt thứ 2 ta có:
\(x^2+1=\sqrt{7x^2-3}\)
<=> \(x^4-5x^2+4=0\)
<=> \(\orbr{\begin{cases}x^2=4\\x^2=1\end{cases}}\)<=> x = 2 (tm đk) ; x = -2 ( loại ); x = 1 ( tmđk ) ; x = -1 (loại)
=> Trường hợp này có 2 nghiệm: ( x ; y ) là ( 2; 1 ) và ( 1; 1 )
+) Với \(y-\sqrt{x-1}=0\)<=> \(y=\sqrt{x-1}\) thay vào pt (2) ta có:
\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\)
<=> \(\left(x^2-4\right)+\left(\sqrt{x-1}-1\right)-\left(\sqrt{7x^2-3}-5\right)=0\)
<=> \(\left(x-2\right)\left(x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}\right)=0\)
<=> \(\orbr{\begin{cases}x-2=0\\x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}=0\left(loai\right)\end{cases}}\)
( vì \(x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}=\left(x+2\right)\left(1-\frac{7}{\sqrt{7x^2-3}+5}\right)+\frac{1}{\sqrt{x-1}+1}>0\)
với mọi x > = 1 )
<=> x = 2 (tm)
Thay vào pt dưới ta có: y = 1
=> trường hợp này có nghiệm ( 2; 1)
Kết luận:...
Giải bất phương trình:
\(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}>\sqrt{x^2-2}+\sqrt{3x^2-5x-1}\)
1. giải phương trình bậc hai một ẩn
a, 3x2+7x+2=0
b,\(\dfrac{x^2}{3}+\dfrac{4x}{5}-\dfrac{1}{12}\)=0
c\(\left(5-\sqrt{2}\right).x^2-10x+5x+\sqrt{2}=0\)
d,(x-1)(x+2)=70
`a,3x^2+7x+2=0`
`<=>3x^2+6x+x+2=0`
`<=>3x(x+2)+x+2=0`
`<=>(x+2)(3x+1)=0`
`<=>x=-2\or\x=-1/3`
d) Ta có: (x-1)(x+2)=70
\(\Leftrightarrow x^2+2x-x-2-70=0\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2+9x-8x-72=0\)
\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)
Vậy: S={8;-9}
`d,(x+1)(x+2)=70`
`<=>x^2+3x+2=70`
`<=>x^2+3x-68=0`
`<=>(x+3/2)^2=281/4`
`<=>x=(+-\sqrt{281}-3)/2`