Chứng tỏ rằng 30 + 31 + 32 + 32 + ............+311 chia hết cho 40
Chứng tỏ rằng tổng A = 1+3+32+33+...+311 chia hết cho 13
Cho biểu thức A=31+32+34+….+360.chứng tỏ rằng A chia hết cho 40.
nhanh giúp mk với ạ cảm ơn
\(A=3+3^2+3^3+...+3^{60}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)
Chứng tỏ rằng 3232...32( n số 32 ) chia hết cho 31
Chứng tỏ rằng 31 + 32 + 33 +…+ 399 + 3100 chia hết cho 4.
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
Bài 5. Cho B = 30 + 31 + 32 + 33 + .... + 3100. Chứng tỏ B chia hết cho 13
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
Cho C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11 . Chứng minh rằng:
a) C ⋮ 13
b) C ⋮ 40
Cho C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11 . Chứng minh rằng:
a, C ⋮ 13
b, C ⋮ 40
a, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 +...+ 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 1 + 3 2 + ... + 3 9 1 + 3 1 + 3 2
= 1 + 3 1 + 3 2 . 1 + 3 3 + . . . + 3 9
= 13. 1 + 3 3 + . . . + 3 9 ⋮ 13
b, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 1 + 3 1 + 3 2 + 3 3 + 3 8 1 + 3 1 + 3 2 + 3 3
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 4 + 3 8
= 40. 1 + 3 4 + 3 8 ⋮ 40
Chứng tỏ rằng:
\(a)M = {32^{2023}} - {32^{2021}}\) chia hết cho 31
b) \(N = {7^6} + {2.7^3} + {8^{2022}} + 1\) chia hết cho 8
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
cho A = 1 + 3 + 32 + 33 + ... + 311
b) chứng minh A chia hết cho 40
Cho C=1+3+32+33+…+311.Chứng minh rằng:
a)C chia hết cho 15
b)C chia hết cho 40
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
\(b,C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\\ =40+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\\ =40.\left(1+3^4+3^8\right)⋮40\)