giải BPT
\(1-x+\sqrt{2x^2-3x-5}< 0\)
Giải bpt \(3x^2-x+1>3\sqrt{x^4-x^2+2x-1}\)
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)
giải bpt
a) \(x^2-3x-\sqrt{x^2-3x+5}>1\)
b) \(\sqrt[4]{x-\sqrt{x^2-1}}+4\sqrt{x+\sqrt{x^2-1}}-3< 0\)
a/ Đặt \(\sqrt{x^2-3x+5}=t>0\)
\(\Leftrightarrow t^2-5-t>1\Leftrightarrow t^2-t-6>0\)
\(\Rightarrow\left[{}\begin{matrix}t>3\\t< -2\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{x^2-3x+5}>3\)
\(\Leftrightarrow x^2-3x+5>9\Leftrightarrow x^2-3x-4>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -1\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt[4]{x-\sqrt{x^2-1}}=t>0\Rightarrow\sqrt[4]{x+\sqrt{x^2-1}}=\frac{1}{t}\)
\(\Leftrightarrow t+\frac{4}{t^2}-3< 0\)
\(\Leftrightarrow t^3-3t^2+4< 0\)
\(\Leftrightarrow\left(t+1\right)\left(t-2\right)^2< 0\)
Do \(t>0\Rightarrow t+1>0\Rightarrow VT\ge0\Rightarrow\) BPT vô nghiệm
Giải bpt: (x2 + 5)(2x + 3)(3x - 1) < 0
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
Giải BPT
\(\sqrt{2x+7}-\sqrt{5-x}\ge\sqrt{3x-2}\)
ĐKXĐ: \(\frac{2}{3}\le x\le5\)
\(\Leftrightarrow\sqrt{2x+7}\ge\sqrt{5-x}+\sqrt{3x-2}\)
\(\Leftrightarrow2x+7\ge2x+3+2\sqrt{-3x^2+17x-10}\)
\(\Leftrightarrow\sqrt{-3x^2+17x-10}\le2\)
\(\Leftrightarrow-3x^2+17x-10\le4\)
\(\Leftrightarrow3x^2-17x+14\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge\frac{14}{3}\end{matrix}\right.\)
Kết hợp ĐKXĐ: \(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}\le x\le1\\\frac{14}{3}\le x\le5\end{matrix}\right.\)
\(\sqrt{3x+4}-\sqrt{5-x}+3x^{^2}-8x-19>0\) giải bpt
Giải bpt
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{3x^2+5}}\le\dfrac{2}{\sqrt{x^2-2}+1}\)
ĐKXĐ: \(x^2\ge2\)
Đặt \(\sqrt{x^2-2}=a\ge0\)
BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)
Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)
Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)
\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)
\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)
\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)
\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)
\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)
giải BPT
a, \(1-x+2\sqrt{2x^2-3x-5}< 0\)
Điều kiện xác định : \(2x^2-3x-5\ge0\Leftrightarrow\left(x+1\right)\left(2x-5\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge\frac{5}{2}\\x\le-1\end{cases}}\)
Ta có : \(1-x+2\sqrt{2x^2-3x-5}< 0\Leftrightarrow2\sqrt{2x^2-3x-5}< x-1\)
Bình phương hai vế : \(4\left(2x^2-3x-5\right)< x^2-2x+1\)
\(\Leftrightarrow7x^2-10x-21< 0\)
Tới đây lập bảng xét dấu là ra nhé :)
(Cần chú ý tới điều kiện của bài toán)
mik cũng lm đến đó rồi nhưng thầy cho đáp án la 5/2<x<3
Để mình lập bảng cho bạn nhé :)
Đặt \(f\left(x\right)=7x^2-10x-21\)
x | \(-\infty\) | \(\frac{5-2\sqrt{43}}{7}\) | \(\frac{5+2\sqrt{43}}{7}\) | \(+\infty\) |
f(x) | + | 0 --- | 0 | + |
Vậy nghiệm của bpt : \(\frac{5}{2}\le x< \frac{5+2\sqrt{43}}{7}\)