Cho x < y. Chứng minh: 6-4x > 1-4y
Chứng minh
a. x^2+y^2-4x-2y+6≥1
b. x^2+4y^2+z^2-4x+4y-8z+25≥4
Giải chi tiết giúp em với. Năn nỉ á :((
\(a,x^2+y^2-4x-2y+6\)
\(=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+1\)
Ta có: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+1\ge1\forall x,y\)
Hay: \(x^2+y^2-4x-2y+6\ge1\)
\(b,x^2+4y^2+z^2-4x+4y-8z+25\)
\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+4\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\)
Vì: \(\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\ge4\forall x,y,z\)
Hay: \(x^2+4y^2+z^2-4x+4y-8z+25\ge4\)
=.= hok tốt !!
Chứng minh giá trị biểu thức sau luôn dương với mọi x,y
A=4X^2+2y^2+4x+4y+6
B=4x^2+4y+5y^2-6xy+4
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng 1/x+y + 1/y+z + 1/z+x < 1/4x + 1/4y + 1/4z + 9/4
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
Bài 6 chứng minh các biểu thức luôn dương vs mọi x,y
A=x^2+2x+2
B=4x^2-4x+11
C=x^2-x+1
D=x^2-2x+y^2+4y+6
E=x^2-2xy+y^2+x^2-8x+20
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)
\(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
\(B=4x^2-4x+11=\left(2x-1\right)^2+10\ge10>0\left(\forall x\right)\)
\(C=x^2-x+1=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(D=x^2-2x+y^2+4y+6=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1>0\)
\(E=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4\ge4>0\)\(\left(\forall x,y\right)\)
Cho x , y là các số thực. Chứng minh : x^2 + y^2 + 16 ≥ xy + 4x + 4y
Áp dụng BĐT Cô-si với 2 số ko âm,ta có:
x^2+y^2>=2xy
y^2+16>=8y
x^2+16>=8y
suy ra 2(x^2+y^2+16)>=2xy+8x+8y
suy ra x^2+y^2+16>=xy+4x+4y
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
B1: Chứng minh rằng các biểu thức sau luôn có giá trị dương:
a, x^2+5x+7
b,9x^2+4x+y^2-6y+15
c,4x^2+4x+11
d,(x-1).(x+2).(x+3).(x+6)
e,x^2-2x+y^2-4y+7
1.1 tìm giá trị nhỏ nhất của các biểu thức
a) A=4x^2 +4x+1
b)B=(x-1)* (x+2) *(x+3)*(x+6)
c)C=x^2-2x+y^2-4y+7
1.2 tìm giá trị lớn nhất của các biểu thức
a.A=5-8x-x^2
b.B=5-x^2+2x-4y^2-4y
1.3 a. cho a^2 +b^2 +c^2 =ab+bc +ca chứng minh rằng a=b=c
Bài 1:
a, \(A=4x^2+4x+1\)
\(A=4x^2+2x+2x+1\)
\(A=2x.\left(2x+1\right)+\left(2x+1\right)\)
\(A=\left(2x+1\right)^2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+1\right)^2\ge0\)
Hay \(A\ge0\) với mọi giá trị của \(x\in R\).
Để \(A=0\)thì \(\left(2x+1\right)^2=0\Rightarrow2x=-1\Rightarrow x=\dfrac{-1}{2}\)
Vậy.....
b, \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(B=\left[\left(x-1\right).\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(B=\left(x^2+6x-x+6\right).\left(x^2+3x+2x+6\right)\)
\(B=\left(x^2+5x+6\right)\left(x^2+5x+6\right)\)
\(B=\left(x^2+5x+6\right)^2\)
\(B=\left(x^2+2,5x+2,5x+6,25-0,25\right)^2\)
\(B=\left[\left(x+2,5\right)^2-0,25\right]^2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2,5\right)^2\ge0\Rightarrow\left(x+2,5\right)^2-0,25\ge-0,25\)
\(\Rightarrow\left[\left(x+2,5\right)^2-0,25\right]^2\ge0,0625\)
Hay \(B\ge0,0625\) với mọi giá trị của \(x\in R\).
Để \(B=0,0625\) thì \(\left[\left(x+2,5\right)^2-0,25\right]^2=0,0625\)
\(\Rightarrow\left(x+2,5\right)^2-0,25=0,25\)
\(\Rightarrow x+2,5=0\Rightarrow x=-2,5\)
Vậy.......
Câu c làm tương tự!! Chúc bạn học tốt!!!
\(A=4x^2+4x+1=\left(2x+1\right)^2\ge0\)
Vậy GTNN của A là 0 khi \(\left(2x+1\right)^2=0\Rightarrow2x+1=0\Rightarrow x=\dfrac{-1}{2}\)
\(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\) \(=\left(x^2+5x\right)^2-36\ge-36\)
Vậy GTNN của B là -36 khi \(\left(x^2+5x\right)^2=0\Rightarrow x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) \(C=x^2-2x+y^2-4y+7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+3=\left(x-1\right)^2+\left(y-2\right)^2+3\ge3\)
Vậy GTNN của C là 3 khi \(\left[{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=5-8x-x^2=21-\left(16+8x+x^2\right)=21-\left(4+x\right)^2\le21\)Vậy GTLN của A là 21 khi \(4-x=0\Rightarrow x=4\)