Áp dụng BĐT Cô-si với 2 số ko âm,ta có:
x^2+y^2>=2xy
y^2+16>=8y
x^2+16>=8y
suy ra 2(x^2+y^2+16)>=2xy+8x+8y
suy ra x^2+y^2+16>=xy+4x+4y
Áp dụng BĐT Cô-si với 2 số ko âm,ta có:
x^2+y^2>=2xy
y^2+16>=8y
x^2+16>=8y
suy ra 2(x^2+y^2+16)>=2xy+8x+8y
suy ra x^2+y^2+16>=xy+4x+4y
Các số thực x, y, a thỏa mãn:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}=a\)
Chứng minh đẳng thức: \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Bài 1. Chứng minh rằng với mọi x và y ta luôn có: \(\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}\ge x+2y\)
Bài 2. Cho x, y, z là các số thực tuỳ ý. Chứng minh rằng:
\(\sqrt{x^2+xy+y^2}\sqrt{y^2+yz+z^2}\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Bài 3. Cho x, y, z là các số thực dương thoả mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{2x^2+xy+2y^2}\sqrt{2y^2+yz+2z^2}\sqrt{2z^2+zx+2x^2}\)
Bài 3. Cho x, y, z là các số thực không âm thoả mãn x+y+z=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{2x^2+3xy+2y^2}\sqrt{2y^2+3yz+2z^2}\sqrt{2z^2+3zx+2x^2}\)
Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:
\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)
Bài 2: Chứng minh rằng với mọi số thực x,y ta có:
\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)
Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:
\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)
Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)
Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)
Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)
Bài 7: Chứng minh rằng với mọi số thực a,b ta có:
\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)
Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:
\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)
Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:
\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)
Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:
\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)
Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:
\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Cho x,y,z là các số thực lớn hơn 1 . Chứng minh \(\dfrac{x^2}{x-1}+\dfrac{y^2}{y-1}+\dfrac{z^2}{z-1}\ge12\)
Cho các số thực dương $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\le1\)
Cho x,y là hai số thực dương. Tìm GTNN của P = \(\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Cho x, y là hai số dương thoả mãn x+y=2. Tìm GTNN của biểu thức
\(P=\frac{1}{4x^2+2}+\frac{1}{4y^2+2}+\frac{2}{xy}\)