Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yết Thiên
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 21:31

\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)

Đề sai

Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 21:35

\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)

\(=2\sqrt{x}\)

Adu Darkwa
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Cold Wind
Xem chi tiết
Mỹ Duyên
25 tháng 6 2017 lúc 11:56

Đề có sai ko v???

Cold Wind
25 tháng 6 2017 lúc 15:08

Biểu thức nguyên đề thế này:

\(\dfrac{2x}{x+3\sqrt{x}+2}+\dfrac{5\sqrt{x}}{x+4\sqrt{x}+3}+\dfrac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)

các đại ca xem... thế nào ạ??.....

Mỹ Duyên, nguyen van tuan

Anh Quynh
Xem chi tiết
TÊN HỌ VÀ
Xem chi tiết
Akai Haruma
25 tháng 5 2023 lúc 23:05

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 4$
\(A=\left[\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-1\right]:\left[\frac{(3-\sqrt{x})(3+\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right]\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)

Phạm Hà Linh
Xem chi tiết
callme_lee06
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 22:22

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)

b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)

Nguyễn Huy Tú
5 tháng 2 2022 lúc 22:42

a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

b, với x > 0 

\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)

\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)

Vũ Hiền
Xem chi tiết
Yeutoanhoc
14 tháng 5 2021 lúc 18:14

`1)P((\sqrtx+1)/(\sqrtx-2)-2/(x-4)).(\sqrtx-1+(\sqrtx-4)/\sqrtx)(x>0,x ne 4)`

`=((x+3\sqrtx+2-2)/(x-4)).((x-\sqrtx+\sqrtx-4)/\sqrtx)`

`=((x+3\sqrtx-4)/(x-4)).((x-4)/\sqrtx))`

`=(x+3\sqrtx)/\sqrtx`

`=(\sqrtx(\sqrtx+3))/\sqrtx`

`=\sqrtx+3(đpcm)`

`2)P=x+3

`<=>\sqrtx+3=x+3`

`<=>x-\sqrtx=0`

`<=>\sqrtx(\sqrtx-1)=0`

Vì `x>0=>\sqrtx>0`

`=>\sqrtx-1=0<=>x=1(tm)`

Vậy `x=1=>\sqrtx+3=x+3`

Yeutoanhoc
14 tháng 5 2021 lúc 18:16

`1)P((\sqrtx+1)/(\sqrtx-2)-2/(x-4)).(\sqrtx-1+(\sqrtx-4)/\sqrtx)(x>0,x ne 4)`

`=((x+3\sqrtx+2-2)/(x-4)).((x-\sqrtx+\sqrtx-4)/\sqrtx)`

`=((x+3\sqrtx)/(x-4)).((x-4)/\sqrtx))`

`=(x+3\sqrtx)/\sqrtx`

`=(\sqrtx(\sqrtx+3))/\sqrtx`

`=\sqrtx+3(đpcm)`

`2)P=x+3

`<=>\sqrtx+3=x+3`

`<=>x-\sqrtx=0`

`<=>\sqrtx(\sqrtx-1)=0`

Vì `x>0=>\sqrtx>0`

`=>\sqrtx-1=0<=>x=1(tm)`

Vậy `x=1=>\sqrtx+3=x+3`