Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trong Ngoquang
Xem chi tiết
Nguyễn Ánh
26 tháng 5 2021 lúc 13:29

undefinedundefinedundefined

Tri Truong
Xem chi tiết
Kaito Kid
12 tháng 3 2022 lúc 15:03

undefinedhình

Kaito Kid
12 tháng 3 2022 lúc 15:04

undefined

tham khảo

Almoez Ali
8 tháng 6 2022 lúc 7:43

undefined

Nguyễn Phương Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 0:57

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

2: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC

góc EBC=1/2*sđ cung EC=90 độ

=>EB vuông góc BC

=>EB//OA

góc BCD=1/2*sđ cung BD=90 độ

=>CD vuông góc BC

=>CD//OA

=>góc AiF=góc CDF

=>góc AIF=góc ACF

=>AFIC nội tiếp

=>góc AIC=góc AFC=90 độ

góc AFC+góc EFC=90+90=180 độ

=>E,F,A thẳng hàng

Hắc Thiên
Xem chi tiết
26-Huỳnh Công Minh-8TC1
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2023 lúc 20:22

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên AO là trung trực của BC

=>AO vuông góc BC

góc EBC=1/2*180=90 độ

=>EB vuông góc BC

=>AO//EB

b: Xét ΔMAD và ΔMBA co

góc AMD chung

góc MDA=góc MAB

=>ΔMAD đồng dạng với ΔMBA

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2023 lúc 9:36

a: góc OBA+góc OCA=90+90=180 độ

=>OBAC nội tiếp

Xét ΔCME và ΔBMC có

góc M chung

góc CEM=góc BCM

=>ΔCME đồng dạng với ΔBMC

b: Xét ΔABE và ΔAKB có

góc ABE=góc AKB

góc BAE chung

=>ΔABE đồng dạng với ΔAKB

=>BF/BK=BA/AK=AE/AB

Xét ΔACE và ΔAKC có

góc ACE=góc AKC

góc CAE chung

=>ΔACE đồng dạng với ΔAKC

=>CE/CK=AE/AC

=>CE/CK=BF/BK

=>CE*BK=CF*BK

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 10:39

loading...

 

nguyễn xuân tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2021 lúc 22:15

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Quỳnh mon
Xem chi tiết
Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 14:02

Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi

Nguyễn Lê Phước Thịnh
21 tháng 4 2023 lúc 14:02

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp đường tròn đường kính OA(1)

ΔOMN cân tại O

mà OH là trung tuyến

nên OH vuông góc MN

=>OH vuông góc HA

=>H nằm trên đường tròn đường kính OA(2)

Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

Xét ΔKCO vuông tại C và ΔKHA vuông tại H có

góc K chung

=>ΔKCO đồng dạng với ΔKHA

=>KC/KH=KO/KA

=>KC*KA=KO*KH

c: góc ABE+góc OBE=90 độ

góc CBE+góc OEB=90 độ

mà góc OBE=góc OEB

nên góc ABE=góc CBE

=>BE là phân giác của góc ABC

mà AE là phan giác góc BAC

nên E cách đều AB,BC,AC

Nguyễn Việt Lâm
21 tháng 4 2023 lúc 14:29

d.

Qua O kẻ đường thẳng song song AC cắt AB tại G, kẻ AH vuông góc TF

Do O, A, B, C cố định nên G cố định \(\Rightarrow S_{OAG}\) cố định

Áp dụng Talet: \(\dfrac{AG}{AF}=\dfrac{TO}{TF}\)  \(\Rightarrow\dfrac{\dfrac{1}{2}OB.AG}{\dfrac{1}{2}OB.AF}=\dfrac{\dfrac{1}{2}AH.TO}{\dfrac{1}{2}AH.TF}\)

\(\Rightarrow\dfrac{S_{OAG}}{S_{OAF}}=\dfrac{S_{OAT}}{S_{AFT}}\Rightarrow S_{OAG}=\dfrac{S_{OAF}.S_{OAT}}{S_{AFT}}\le\dfrac{\left(S_{OAF}+S_{OAT}\right)^2}{4S_{AFT}}=\dfrac{S_{AFT}^2}{4S_{AFT}}=\dfrac{S_{AFT}}{4}\)

\(\Rightarrow S_{AFT}\ge4S_{OAG}\)

Dấu "=" xảy ra khi và chỉ khi \(S_{OAF}=S_{OAT}\Rightarrow AF=AT\)

\(\Rightarrow AO\) là trung trực FT hay \(d\perp AO\)