Câu 1 . Từ điểm A nằm bên ngoài đường tròn (o) về hai tiếp tuyến AB,AC lần lượt tại B,C của (o) a.chứng minh tứ giác ABOC nội tiếp đường tròn b.vẽ đường kính BD,CE của (o) , gọi I là giao điểm của AO và BC ,gọi F là giao điểm của đường thẳng DI và (o) , với F khác (o) Chứng minh ba điểm A,F,E thẳng hàng c.Chứng minh OF là tiếp tuyến của đường tròn ngoại tiếp tam giác AIF
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn
từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC ( B,C là các tiếp điểm ). gọi M là điểm bất kỳ trên cung nhỏ BC của đường tròn ( O ) ( M khác B và C ). Tiếp tuyến tại M cắt AB và AC tại E,F, đường thẳng BC cắt OE và OF ở P và Q. tìm M để diện tích OPQ min
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED. a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC. b) Chứng minh: AE.AD = AC c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED.
a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC.
b) Chứng minh: AE.AD = AC
c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
Cho đường tròn tâm O bán kính 2 cm từ điểm A bên ngoài đường tròn , vẽ 2 tiếp điểm AB và AC vuông góc với nhau (B;C là tiếp điểm ) . lấy điểm M thuộc cung BC . vẽ tiếp tuyến của đường tròn M tại 2 tiếp tuyến lần lượt ở D và E
a) tứ giác ABOC là hình gì
b) tình chu vi tam giác ADE
c) tính góc DOE
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
\(Cho đường tròn(O,R) và 1 điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC ( B,C là tiếp điểm). Kẻ đường kính BD, đường thẳng vuong góc với BD tại O cắt đường thẳng DC tại E a)C/m: OA ⊥ BC và DC//OA b) C/m AEDO là hình bình hành c) Đường thẳng BC cắt OA và OE lần lượt tại I và K. C/m IK.IC+OA.OI= R 2\)
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r