giải pt
\(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
giải pt :
a,\(\left(\sqrt{5x-1}+\sqrt{x-1}\right)\left(3x-1-\sqrt{5x^2-6x+1}\right)=4x\)
b,\(2\left(\sqrt{x}-\sqrt{x-1}\right)\left(1+\sqrt{x^2-1}\right)=x\sqrt{x}\)
a, ĐK: \(x\ge1\)
Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)
TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)
\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)
\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)
\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)
\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Giải pt
\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+5x-2\right)\)
pt phải có dấu bằng giữa hai vế chứ bạn hik như thiếu đề ạk bn ktra lại xem
=>(x-1)(x^2-2x+1-x^2-5x+2)=0
=>(x-1)(-7x+3)=0
=>x=3/7 hoặc x=1
giải pt:
a. \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
b, \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
Giải các phương trình sau
\(a.\left(3x+2\right)^2-\left(3x-2\right)^2=5x+8\)
\(b.3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(c.\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)
\(d.\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+8\)
\(\Rightarrow\left(3x+2+3x-2\right)\left(3x+2-3x+2\right)=5x+8\)
\(\Rightarrow4.6x=5x+8\Rightarrow24x=5x+8\)
\(\Rightarrow19x=8\Rightarrow x=\frac{8}{19}\)
b) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Rightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Rightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)
\(\Rightarrow-12x+12+9x-9=3x-9\)
\(\Rightarrow-3x+3=3x-9\)
\(\Rightarrow6x=12\Rightarrow x=2\)
c) \(\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)
\(\Rightarrow\left(x+3+x-3\right)\left(x+3-x+3\right)=6x+18\)
\(\Rightarrow2x.6=6x+18\Rightarrow6x=18\Rightarrow x=3\)
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
Mọi người giải giúp mình bài này với:
B2: Giải các PT sau:
l) \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
m) \(2x\left(x-1\right)=x^2-1\)
n) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
o) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
p) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right)=0\)
q) \(\frac{1}{x}x+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
r) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
s) \(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)
Các Pro giúp mình với !
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
1 Giari các PT:
a, \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x-1\right)\left(x-2\right)}\)
b, \(\left(\frac{3}{2x+1}+2\right)\left(5x-2\right)=\frac{5x-2}{2x+1}\)
a) \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right).\left(x-2\right)}\) Đk : x \(\ne-1\) ; x \(\ne2\)
\(\Leftrightarrow\frac{2.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}-\frac{1.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=3x-11\)
\(\Leftrightarrow2x-4-x-1=3x-11\)
\(\Leftrightarrow2x-3x-x=-11+4+1\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Vậy S = \(\left\{3\right\}\)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
giải pt \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)