giải bất phương trình
\(\sqrt{x-3}+2>\sqrt{2x^2-6x+14}-x\)
Giải phương trình \(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
Giải hệ phương trình: \(\begin{cases}y^3-3y^2-6x+2=\frac{\sqrt{y^3+6x+10}-\sqrt{2y^3-3y^2}}{x^2+2x+2016}\\\sqrt{2x^2-xy+x}=3y-2x-3\end{cases}\)
Giải phương trình:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(ĐK:x\in R\)
Đặt \(x^2-2x=a\), PTTT:
\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
giải phương trình
\(\sqrt{2x^2-12x+34}+\sqrt{4x^2-24x+40}=-3+6x-x^{^{ }2}\)
Giải phương trình sau:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
=>|x-1|+|x-3|=1
TH1: x<1
Pt sẽ la 1-x+3-x=1
=>4-2x=1
=>x=3/2(loại)
TH2: 1<=x<3
Pt sẽ là x-1+3-x=1
=>2=1(loại)
TH3: x>=3
Pt sẽ là x-1+x-3=1
=>2x-4=1
=>2x=5
=>x=5/2(loại)
Giải hệ phương trình: \(\hept{\begin{cases}y^3-3y^2-6x+2=\frac{\sqrt{y^3+6x+10}-\sqrt{2y^3-3y^2}}{x^2+2x+2016}\\\sqrt{2x^2-xy+x=3y-2x-3}\end{cases}}\)
Giúp tớ với nhé =))
giải phương trình \(4\sqrt{2x+8}+3\sqrt[3]{4x-8}\left(x-1\right)=2x^2+12x-14\)
\(\text{Cho bất phương trình :}-4\sqrt{-x^2+2x+15} \ge x^2-2x-13+m.\text{ Tìm m để bất phương trình nghiệm đúng với mọi x \in[-3;5]}\)
Đặt \(\sqrt{-x^2+2x+15}=t\Rightarrow0\le t\le4\)
BPT trở thành:
\(-4t\ge-t^2+2+m\)
\(\Leftrightarrow t^2-4t-2\ge m\)
\(\Rightarrow m\le\min\limits_{\left[0;4\right]}\left(t^2-4t-2\right)\)
Xét \(f\left(t\right)=t^2-4t-2\) trên \(\left[0;4\right]\)
\(-\dfrac{b}{2a}=2\in\left[0;4\right]\)
\(f\left(0\right)=f\left(4\right)=-2\) ; \(f\left(2\right)=-6\)
\(\Rightarrow f\left(t\right)_{min}=-6\Rightarrow m\le-6\)
Bất phương trình: \(\sqrt{\text{-x^2 + 6x - 5}}>8-2x\) có nghiệm là:
A. 3 < x ≤ 5 B. 2 < x ≤ 3 C. -5 < x ≤ -3 D. -3 < x ≤ -2