Tìm GTNN của biểu thức : \(A=\frac{2x^2-2x+9}{x^2+2x+5}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
GTNN của biểu thức A = \(\frac{-x^2-2x-5}{x^2+2x+2}\)
VÌ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\) nên A luôn xác định
\(A=\frac{-x^2-2x-5}{x^2+2x+2}\Leftrightarrow x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\)
Để A tồn tại giá trị nhỏ nhất thì tồn tại giá trị x thỏa mãn min A , vậy thì ta cần tìm điều kiện để phương trình \(x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\) có nghiệm.
\(\Delta'=\left(A+1\right)^2-\left(A+1\right)\left(2A+5\right)=-A^2-5A-4\)
\(=-\left(A+1\right)\left(A+4\right)\ge0\)
\(\Leftrightarrow\left(A+1\right)\left(A+4\right)\le0\Leftrightarrow-4\le A\le-1\)
Vậy min A = -4 , tại x = -1
Khó thế! Cậu cần gấp ko? Nếu ko thì sáng mai đem hỏi Khánh Linh ấy! Cậu ấy siêu hơn tớ
bạn đặt biểu thức A=a
cho tử = mẫu nhân với a, r chuyển sang một bên để thành pt bậc hai, sau đố tính đen ta , tìm ra a, cái nào nhỏ nhất thì lấy.
KL Amin = a khi x = ? là dc
Tìm a) GTNN của biểu thức B=|2x+6|+2+2x
b) GTLN của biểu thức C=\(\frac{4-\left|x-y+1\right|}{5+\left|x+y+1\right|}\)
tìm GTNN của biểu thức: A = \(\frac{x^2}{4}+x-1\) ; B = \(\frac{x^2-2x+2}{x^2+2x+3}\) ; C = \(\frac{x^2-2x-1}{2x^2+4x+9}\)
\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(x=-2\)
Với 2 câu B, C cần kiến thức lớp 9 để làm:
\(Bx^2+2Bx+3B=x^2-2x+2\)
\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)
\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)
\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)
\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)
\(2Cx^2+4Cx+9C=x^2-2x-1\)
\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)
\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)
\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)
\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)
Bài 1: Cho biểu thức C = \(\frac{x}{2x-2}+\frac{x^2+1}{2x-2x^2}\)
a. Tìm x để biểu thức có nghĩa
b.Rút gọn biểu thứ C
c. tìm giá trị của x để biểu thức có giá trị -0,5
Bài 2: Cho biểu thức A = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định
b.Tìm giá trị của x để A=1; A=-3
Tìm GTLN,GTNN của biểu thức: \(\frac{2x^2+12x}{x^2+2x+3}\)
tìm GTNN của biểu thức A = \(\frac{x^2-2x+2006}{x^2}\)
ta có:\(A=\frac{x^2-2x+2006}{x^2}=\frac{2006x^2-2.2006.x+2006^2}{2006x^2}\)
A=\(\frac{\left(x-2006\right)^2+2005x^2}{2006x^2}=\frac{\left(x-2006\right)^2}{2006x^2}+\frac{2005}{2006}\ge\frac{2005}{2006}\forall x\)
dấu = xảy ra khi x=2006
vậy Amin= 2005/2006 khi x=2006
dk:\(x\ne0\)
\(A=1-\frac{2}{x}+\frac{2006}{x^2}\)
đặt \(y=\frac{1}{x}\Rightarrow A=1-2y+2006y^2=2006\left(y^2-2.\frac{1}{2006}y+\frac{1}{2006^2}-\frac{1}{2006^2}\right)+1\)
\(A=2006\left(y-\frac{1}{2006}\right)^2-\frac{1.2006}{2006^2}+1=2006\left(y-\frac{1}{2006}\right)^2+\frac{2005}{2006}\)
\(\Rightarrow A\ge\frac{2005}{2006}\Rightarrow A_{min}=\frac{2005}{2006}\Leftrightarrow y=\frac{1}{2006}\)
từ đó thay y=\(\frac{1}{x}\) vào A là xong
A=\(\dfrac{x^2-2x+2016}{x^2}\)
<=>Ax2=x2-2x+2016
<=>(A-1)x2+2x-2016=0
\(\Delta\)=4-4(A-1)(-2016)\(\ge0\)
<=>4+4.2016A-4.2016\(\ge0\)
<=>A\(\ge\)\(\dfrac{4\left(2016-1\right)}{4.2016}=\dfrac{2015}{2016}\)
=>MinA =\(\dfrac{2015}{2016}\)khi x=2016
tìm gtnn của biểu thức A=\(\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2+2x+1}{x^2+2}\)
\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)
\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)
\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2
Bài 5: Tìm GTNN của các biểu thức sau:
a) A = x^2 – 4x + 9
b) B = x^2 – x + 1
c) C = 2x^2 – 6x
Bài 4: Tìm GTLN của các đa thức:
a) M = 4x – x^2 + 3
b) N = x – x^2
c) P = 2x – 2x^2 – 5
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)