Cho a, b, c thuộc đoạn [-1;2]. Chứng minh rằng \(a+b+c\ge0\)
Cho 4 điểm A,B,C,D không thuộc đường thẳng a, trong đó điểm A thuộc 1 nửa mặt phẳng bờ a, còn điểm B,C,D thuộc nửa mặt phẳng kia. Đường thẳng a cắt đoạn thẳng nào trong các đoạn thẳng nửa 2 trong 4 điểm A,B,C,D
Cho a,b,c là các số thực thuộc đoạn [0,1 ] .Chứng minh:
\(a\left(b-1\right)+b\left(1-c\right)+c\left(1-a\right)\le1\)
\(a\left(b-1\right)+b\left(1-c\right)+c\left(1-a\right)\le1\\ \Leftrightarrow-abc+ab+bc+ca-a-b-c+1\le2-abc\\ \Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le2-abc\)
lại có \(abc\le1\) nên \(2-abc\ge1\)
ta chứng minh \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
luôn đúng do \(0\le a;b;c\le1\)
vậy bđt dc cm
tick mik nhaaaaa.mik ms l9 thui
Cho a,b,c là các số thực thuộc đoạn [1,2 ].Chứng minh rằng:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\).
Khi đó: \(\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow ab+bc\ge ac+b^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\\\dfrac{c}{a}+1\ge\dfrac{c}{b}+\dfrac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le2+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
Vì \(1\le c\le a\le2\Rightarrow\left(\dfrac{a}{c}-2\right)\left(\dfrac{2a}{c}-1\right)\le0\)
\(\Leftrightarrow\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)
Đẳng thức xảy ra khi \(a=b=2;c=1\) và các hoán vị.
giúp mình với: cho a,b,c là các số thực thuộc đoạn [0;1]. tìm GTLN của biểu thức P=a(1-b)+b(1-c)+c(1-a)
Cho các số thực a,b,c thuộc đoạn [0;1]. Tìm Max
\(P=\dfrac{a}{b+c+1}+\dfrac{b}{a+c+1}+\dfrac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow P\le\dfrac{a}{b+c+1}+\dfrac{b}{b+c+1}+\dfrac{c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow P\le\dfrac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)=\dfrac{a-1}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)+1\)
\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{b+c+1}\right]+1\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{bc+b+c+1}\right]+1\)
\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{\left(1+b\right)\left(1+c\right)}\right]+1\)
\(\Rightarrow P\le\left(1-a\right)\left(\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right)+1\)
Do \(a;b;c\le1\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\\left(1-b^2\right)\left(1-c^2\right)\le1\\\end{matrix}\right.\) \(\Rightarrow\left(1-a\right)\left[\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right]\le0\)
\(\Rightarrow P\le1\)
\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị
Cho a, b, c thuộc đoạn [0;1]. CMR;
\(\dfrac{a}{1+b+ac}+\dfrac{b}{1+c+ab}+\dfrac{c}{1+a+bc}\le1\)
Không mất tính tổng quát ta giả sử \(0\le a\le b\le c\le1\)
\(\Rightarrow\left(1-c\right)\left(b-a\right)\ge0\)\(\Leftrightarrow b-a-bc+ac\ge0\Leftrightarrow ac+b\ge a+bc\)
\(\Leftrightarrow ac+b+1\ge a+bc+1\)\(\Rightarrow\dfrac{a}{ac+b+1}\le\dfrac{a}{a+bc+1}\)(1)
ta cũng có : \(\left(1-b\right)\left(c-a\right)\ge0\Leftrightarrow ab+c\ge a+bc\Leftrightarrow ab+c+1\ge a+bc+1\)
\(\Rightarrow\dfrac{b}{ab+c+1}\le\dfrac{b}{a+bc+1}\) mà \(b\le c\le1\)
nên \(\dfrac{b}{a+bc+1}\le\dfrac{bc}{a+bc+1}\) \(\Rightarrow\dfrac{b}{ab+c+1}\le\dfrac{bc}{a+bc+1}\)(2)
ta lại có : \(\dfrac{c}{a+bc+1}\le\dfrac{1}{a+bc+1}\)(3)
Cộng Ba vế BĐT (1) (2) (3) lại với nhau ta có
\(\dfrac{a}{1+b+ac}+\dfrac{b}{1+c+ab}+\dfrac{c}{1+a+bc}\le\dfrac{a+bc+1}{a+bc+1}=1\)
không cần giả sử gì hết , phang luôn \(\left(a-1\right)\left(b-1\right)\ge0\) (:V)
\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow ab+c+1\ge a+b+c\)
\(\Rightarrow VT\le\sum\dfrac{b}{a+b+c}=1\)
Dấu = xảy ra : 2 số bằng 1 , số còn lại tùy ý
Mở rộng : \(\forall a,b,c\in\left[0;1\right]\).Cmr:
\(\dfrac{a}{b+c+1}+\dfrac{b}{c+a+1}+\dfrac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
( Olympic USA 1980 )
cho điểm O thuộc đg thẳng xy lấy điểm A thuộc tia Ox mà OA = 5 cm điểm B thuộc tia Oy mà OB = 8 cm giả xử điểm C thuộc tia Oy sao cho O là trung điểm của đoạn thẳng AC
a tính đoạn thẳng BC
b Lấy điểm D thuộc tia Ox sao cho OD =8cm chứng tỏ 2 đoạn thẳng BD và AC có chung 1 điêm
1.Cho ba điểm A, B, C không nằm trên đường thẳng a và không cùng thuộc một nửa mặt phẳng bờ a hỏi đường thẳng a cắt mấy đoạn thẳng trong số ba đoạn thẳng AB, BC, và CA
2.Cho đường thẳng a và bốn điểm A, B, C, D không thuộc a.Cứ qua hai điểm vẽ một đoạn thẳng. Hỏi nhiều nhất là có mấy đoạn thẳng cắt a.
Giúp mik ik, mik cần gấp lắm!!!
1 đường thẳng a cắt 2 đoạn thẳng
2 có 4 đoạn thẳng cắt a
Cho 3 số a, b, c thuộc đoạn [1; 2]. Tìm Max \(S=\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{abc}\)
Do vai trò a;b;c như nhau, không mất tính tổng quát giả sử \(2\ge a\ge b\ge c\ge1\)
\(\Rightarrow1\le\dfrac{a}{c}\le2\)
Đồng thời \(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\Leftrightarrow ab+bc\ge b^2+ac\) (1)
Chia 2 vế của (1) cho \(bc:\)
\(\Rightarrow\dfrac{a}{c}+1\ge\dfrac{b}{c}+\dfrac{a}{b}\)
Chia 2 vế của (1) cho \(ab\Rightarrow1+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}\)
Cộng vế: \(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}\le\dfrac{a}{c}+\dfrac{c}{a}+2\)
Do đó:
\(S=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\left(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}\right)+\dfrac{a}{c}+\dfrac{c}{a}+3\)
\(S\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+5\)
Đặt \(\dfrac{a}{c}=x\Rightarrow1\le x\le2\)
\(S\le2\left(x+\dfrac{1}{x}\right)+5=\dfrac{2x^2-5x+2}{x}+10=\dfrac{\left(2x-1\right)\left(x-2\right)}{x}+10\le10\)
\(S_{max}=10\) khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị
1. Cho ba điểm thẳng hàng A, B, C sao cho B nằm giữa A và C. Làm thế nào để chỉ đo hai lần, mà biết được độ dài của cả ba đoạn thẳng AB, BC, AC? Hãy nêu các cách làm khác nhau.
2. Cho đoạn thẳng AB dài 7cm. Vẽ trung điểm của đoạn thẳng AB.
3. Vẽ hai đường thẳng xy và zt cắt nhau tại O. Lấy A thuộc tia Ox, B thuộc tia Ot, C thuộc tia Oy, D thuộc tia Oz sao cho OA = OC = 3cm, OB = 2cm, OD = 2 OB.
Help me, please!!!