1. Tìm m để pt có nghiệm : \(\sqrt{-x^2+3x-2}=\sqrt{2m+x-x^2}\)
Cho pt \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt GTNN.
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
Tìm m để pt sau có nghiệm thuộc đoạn [0;1]
\(3\sqrt{x}-4x=2\sqrt{x+3x^2}-3\sqrt{3x+1}=m\) ( với m là tham số )
Bạn kiểm tra lại đề, sao có 2 dầu = trong pt thế kia nhỉ?
1, pt x2 - 2m + m2 -2 =0 . tìm m để pt có 2 nghiệm pb tm /x13 -x23 /=10\(\sqrt{2}\)
2,pt x2 - 3x +m=0 tìm m để pt có 2 nghiệm pb tm \(\sqrt{x^2_1+1}+\sqrt{x^{2_2}+1}=3\sqrt{3}\)
Bài 1:
Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)
Khi đó:
\(|x_1^3-x_2^3|=10\sqrt{2}\)
\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)
\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)
Vậy........
Bài 2:
Để pt có 2 nghiệm phân biệt thì:
$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$
Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)
Khi đó:
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)
$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$
$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$
\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)
\(\Rightarrow m=-3\) (thỏa mãn)
Vậy........
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
B1: tìm m để pt có nghiệm: \(4\sqrt{-x^2+3x+4}+3x+4=m\left(2\sqrt{x+1}+\sqrt{4-x}\right)\)
b2: \(y=2x^2-3\left(m+1\right)x+m^2+3m-2\) tìm m để gtnn của hàm số là gt lớn nhất
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)
tìm m để pt \(\left(x^2-3x-4\right)\sqrt{x+7}-m\left(\sqrt{x^2-3x-4}-\sqrt{x+7}\right)=m\) có nhiều nghiệm nhất
`x^2 -2(m+1)x+m^2 -2m+5` (m tham số)
Tìm m để pt có 2 nghiệm pb `x_1 ,x_2` thỏa mãn \(\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x^2_2+4mx_2+4m^2}=7m+2\)
\(\Delta'=\left(m+1\right)^2-\left(m^2-2m+5\right)=4\left(m-1\right)\)
Pt có 2 nghiệm pb khi \(m-1>0\Rightarrow m>1\)
Khi đó ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)>0\\x_1x_2=m^2-2m+5=\left(m-1\right)^2+4>0\end{matrix}\right.\)
\(\Rightarrow\) Cả 2 nghiệm của pt đều dương \(\Rightarrow\left\{{}\begin{matrix}2x_1+m>0\\x_2+2m>0\end{matrix}\right.\) (1)
Do đó:
\(\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x^2_2+4mx_2+4m^2}=7m+2\)
\(\Leftrightarrow\sqrt{\left(2x_1+m\right)^2}+\sqrt{\left(x_2+2m\right)^2}=7m+2\)
\(\Leftrightarrow\left|2x_1+m\right|+\left|x_2+2m\right|=7m+2\)
\(\Leftrightarrow2x_1+m+x_2+2m=7m+2\) (theo (1))
\(\Leftrightarrow2x_1+x_2=4m+2\)
Kết hợp với hệ thức Viet ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\2x_1+x_2=4m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2m\\x_2=2\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-2m+5\)
\(\Rightarrow4m=m^2-2m+5\)
\(\Leftrightarrow m^2-6m+5=0\Rightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=5\end{matrix}\right.\)
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
tìm m để pt \(\left(x-1\right)\left(x-3\right)+3\sqrt{x^2-4x+5}-2m=0\) có nghiệm
PT\(\Leftrightarrow\left(x^2-4x+5\right)+3\sqrt{x^2-4x+5}-2m-2=0\)
Đặt: \(a=x^2-4x+5\left(a\ge1\right)\)
Pt trở thành: \(a^2+3a-2m-2=0\)
Pt trên có nghiệm khi:
\(\Delta\ge0\Leftrightarrow9+4\left(2m+2\right)\ge0\Leftrightarrow m\ge-\dfrac{17}{8}\)