ĐKXĐ: \(1\le x\le2\)
\(-x^2+3x-2=2m+x-x^2\)
\(\Rightarrow x=m+1\)
\(\Rightarrow1\le m+1\le2\)
\(\Rightarrow0\le m\le1\)
ĐKXĐ: \(1\le x\le2\)
\(-x^2+3x-2=2m+x-x^2\)
\(\Rightarrow x=m+1\)
\(\Rightarrow1\le m+1\le2\)
\(\Rightarrow0\le m\le1\)
Tìm m để pt sau có nghiệm \(\sqrt{-x^2+3x-2}\)= \(\sqrt{2m+x+x^2}\)
Tìm m để phương trình có nghiệm duy nhất:
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt{x\left(1-x\right)}=m^3\)
tập tất cả các giá trị của tham số m để pt \(x^2+\sqrt{1-x^2}=m\) có nghiệm là [a,b]
tính S= a+b
tìm tất cả giá trị của m để pt x^4-2(m-1)x^2+2m-1=0 vô nghiệm
Có bao nhiêu số nguyên m thuộc nữa đoạn từ \(\left[-2018,2018\right]\) để pt \(\sqrt{2x^2-x-2m}=x-2\) có nghiệm
Cho bât phương trình \(2\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+2m-9\). Tìm các giá trị của tham số m để bất phương trình nghiệm đứng với \(\forall\) x thuộc [-1;3]
Cho pt:2m-1+\(\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
x^3+(1-2m)x^2-(m+3)x+m-3=0 (1)
a) Chứng tỏ rằng PT (1) luôn có nghiệm x=-1 với mọi giá trị của m
b) Tìm m để PT (1) có 3 nghiệm phân biệt
c) Tìm m để PT (1) có 2 nghiệm cùng âm
d) Tìm m để PT (1) có 3 nghiệm x1 , x2 , x3 thoả mãn x1^2 + x2^2 + x3^2 - x1x2x3 = 10
e) Tìm m để PT (1) có 3 nghiệm x1 , x2 , x3 đều nhỏ hơn 1
Tìm tất cả giá trị của tham số m để :x2+4x+\(\sqrt{21-x^2-4x}+2m-1=0\) có 4 nghiệm pb