Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Minh Quân
Xem chi tiết
Libi Cute
24 tháng 10 2017 lúc 17:32

mk ko bt 123

Ánh Nguyệt Đỗ
Xem chi tiết
Nguyễn Linh Chi
9 tháng 9 2019 lúc 15:11

Câu hỏi của Kudo Shinichi - Toán lớp 9 - Học toán với OnlineMath

Đỗ Thị Ánh Nguyệt
Xem chi tiết
Phạm Minh Quang
4 tháng 11 2019 lúc 19:44
Khách vãng lai đã xóa
Phạm Minh Quang
4 tháng 11 2019 lúc 19:45
Khách vãng lai đã xóa
Võ Hồng Phúc
4 tháng 11 2019 lúc 21:29
Khách vãng lai đã xóa
Mai Hồng Ngọc
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 15:15

đK: \(x\ge0;x\ne25;x\ne9\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right]:\left[\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right]\)

\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right]:\dfrac{25-x-\left(x-9\right)+\left(x-25\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\sqrt{x}-3}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)

Vy Pham
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 8 2021 lúc 11:59

\(\sqrt{25\left(x-3\right)}-10\sqrt{\dfrac{x-3}{25}}-1=3+\sqrt{x-3}\left(đk:x\ge3\right)\)

\(\Leftrightarrow5\sqrt{x-3}-10.\dfrac{1}{5}\sqrt{x-3}-1=3+\sqrt{x-3}\)

\(\Leftrightarrow2\sqrt{x-3}=4\Leftrightarrow\sqrt{x-3}=2\)

\(\Leftrightarrow x-3=4\Leftrightarrow x=7\)

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 13:18

Ta có: \(\sqrt{25\left(x-3\right)}-10\sqrt{\dfrac{x-3}{25}}-1=3+\sqrt{x-3}\)

\(\Leftrightarrow5\sqrt{x-3}-2\sqrt{x-3}-\sqrt{x-3}=4\)

\(\Leftrightarrow2\sqrt{x-3}=4\)

\(\Leftrightarrow x-3=4\)

hay x=7

Hương Phùng
Xem chi tiết
Nguyễn Ngọc Linh
8 tháng 7 2021 lúc 9:20

a. \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=x-3\sqrt{x} +2\sqrt{x}-6=x-\sqrt{x}-6\)

b. \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)

c. \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right).\sqrt{3}\)

\(=\left(\dfrac{5}{\sqrt{3}}-\dfrac{7}{\sqrt{3}}+\sqrt{3}\right).\sqrt{3}=\dfrac{5}{3}-\dfrac{7}{3}+9=\dfrac{25}{3}\)

d. \(\left(1+\sqrt{3}-\sqrt{5}\right)\left(1+\sqrt{3}+\sqrt{5}\right)\)

\(=\left(1+\sqrt{3}\right)^2-5=1+2\sqrt{3}+3-5=2\sqrt{3}-1\)

Tiểu Phàm Trương
Xem chi tiết
tthnew
28 tháng 3 2020 lúc 20:48

I was COME BACK hehe

2/ Đặt \(x=a;\sqrt{25-x^3}=b\) thì \(a^3+b^3=25\)

Theo đề bài ta có hệ: \(\left\{{}\begin{matrix}a^3+b^3=25\\ab\left(a+b\right)=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+b^3+3ab\left(a+b\right)=115\\ab\left(a+b\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{115}\\ab=\frac{30}{a+b}=\frac{30}{\sqrt[3]{115}}\end{matrix}\right.\). Theo hệ thức Viet đảo: a,b là 2 nghiệm của pt:

\(t^2-\sqrt[3]{115}t+\frac{30}{\sqrt[3]{115}}=0\). Hay là \(1/4\, \left( -2\,t+\sqrt [3]{115} \right) ^{2}+{\frac {{115}^{2/3}}{92 }} =0\) (vô nghiệm)

Vậy ...

Khách vãng lai đã xóa
tthnew
28 tháng 3 2020 lúc 21:04

1/ Sol nốt rồi ngủ:v

Đặt \(\sqrt[3]{6x+1}=t\Rightarrow x=\frac{t^3-1}{6}\). Thay vào, pt tương đương:

\(\left( {t}^{3}-3\,t-1 \right) \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) =0 \)

Trước hết ta chứng minh pt bậc 6 vô nghiệm:

\( \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) >0 \)

Thật vậy, dễ thấy \(t^2-3t+\frac{9}{4}=\left(t-\frac{3}{2}\right)^2\ge0\)

Do đó ta cần chứng minh:\({t}^{6}+3\,{t}^{4}-2\,{t}^{3}+8\,{t}^{2}+{\frac{31}{4}} > 0\)

Hay là: \(t^6+t^2\left(3t^2-2t+8\right)+\frac{31}{4}>0\)

Bất đẳng thúc hiển nhiên. Cuối cùng, ta tìm t thỏa mãn:

\(\left( {t}^{3}-3\,t-1 \right) =0\). Em bí mất ;( Dùng Wolfram Alpha nó ra nghiệm phức.

@Akai Haruma giúp em phần này với ạ!

Khách vãng lai đã xóa
Akai Haruma
28 tháng 3 2020 lúc 22:52

Câu 1:

Đặt $\sqrt[3]{6x+1}=a\Rightarrow 6x+1=a^3\Rightarrow 4x+1=a^3-2x(1)$

$8x^3-4x-1=\sqrt[3]{6x+1}=a(2)$

Từ $(1);(2)\Rightarrow 8x^3=a^3-2x+a$

$\Leftrightarrow 8x^3-a^3+(2x-a)=0$

$\Leftrightarrow (2x-a)(4x^2+2ax+a^2)+(2x-a)=0$

$\Leftrightarrow (2x-a)(4x^2+2ax+a^2+1)=0$

Dễ thấy $4x^2+2ax+a^2+1>0$ nên $2x-a=0\Rightarrow 2x=a$

$\Rightarrow 8x^3=a^3=6x+1$

$\Leftrightarrow 8x^3-6x-1=0$

Đến đây dùng pp tổng hợp Cardano- Tartaglia và lượng giác tìm nghiệm thực cho mọi trường hợp (bạn có thể đọc thêm trong tài liệu phương pháp Cardano)

Ta thu được pt có nghiệm:

\(x_1=\cos \frac{\pi}{9}; x_2=\cos \frac{5\pi}{9}; x_3=\cos \frac{7\pi}{9}\)

Khách vãng lai đã xóa
Hỏi Làm Gì
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2019 lúc 17:42

ĐKXĐ:...

\(\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}{\left(9-x\right)}\)

\(=\frac{5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Thị Thu Phương
15 tháng 8 2021 lúc 15:55

ai giúp với ạ :<

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 20:30

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 23:20

1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{5\sqrt{x}-15}{3x-59}\)