I was COME BACK
2/ Đặt \(x=a;\sqrt{25-x^3}=b\) thì \(a^3+b^3=25\)
Theo đề bài ta có hệ: \(\left\{{}\begin{matrix}a^3+b^3=25\\ab\left(a+b\right)=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+b^3+3ab\left(a+b\right)=115\\ab\left(a+b\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{115}\\ab=\frac{30}{a+b}=\frac{30}{\sqrt[3]{115}}\end{matrix}\right.\). Theo hệ thức Viet đảo: a,b là 2 nghiệm của pt:
\(t^2-\sqrt[3]{115}t+\frac{30}{\sqrt[3]{115}}=0\). Hay là \(1/4\, \left( -2\,t+\sqrt [3]{115} \right) ^{2}+{\frac {{115}^{2/3}}{92 }} =0\) (vô nghiệm)
Vậy ...
1/ Sol nốt rồi ngủ:v
Đặt \(\sqrt[3]{6x+1}=t\Rightarrow x=\frac{t^3-1}{6}\). Thay vào, pt tương đương:
\(\left( {t}^{3}-3\,t-1 \right) \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) =0 \)
Trước hết ta chứng minh pt bậc 6 vô nghiệm:
\( \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) >0 \)
Thật vậy, dễ thấy \(t^2-3t+\frac{9}{4}=\left(t-\frac{3}{2}\right)^2\ge0\)
Do đó ta cần chứng minh:\({t}^{6}+3\,{t}^{4}-2\,{t}^{3}+8\,{t}^{2}+{\frac{31}{4}} > 0\)
Hay là: \(t^6+t^2\left(3t^2-2t+8\right)+\frac{31}{4}>0\)
Bất đẳng thúc hiển nhiên. Cuối cùng, ta tìm t thỏa mãn:
\(\left( {t}^{3}-3\,t-1 \right) =0\). Em bí mất ;( Dùng Wolfram Alpha nó ra nghiệm phức.
@Akai Haruma giúp em phần này với ạ!
Câu 1:
Đặt $\sqrt[3]{6x+1}=a\Rightarrow 6x+1=a^3\Rightarrow 4x+1=a^3-2x(1)$
$8x^3-4x-1=\sqrt[3]{6x+1}=a(2)$
Từ $(1);(2)\Rightarrow 8x^3=a^3-2x+a$
$\Leftrightarrow 8x^3-a^3+(2x-a)=0$
$\Leftrightarrow (2x-a)(4x^2+2ax+a^2)+(2x-a)=0$
$\Leftrightarrow (2x-a)(4x^2+2ax+a^2+1)=0$
Dễ thấy $4x^2+2ax+a^2+1>0$ nên $2x-a=0\Rightarrow 2x=a$
$\Rightarrow 8x^3=a^3=6x+1$
$\Leftrightarrow 8x^3-6x-1=0$
Đến đây dùng pp tổng hợp Cardano- Tartaglia và lượng giác tìm nghiệm thực cho mọi trường hợp (bạn có thể đọc thêm trong tài liệu phương pháp Cardano)
Ta thu được pt có nghiệm:
\(x_1=\cos \frac{\pi}{9}; x_2=\cos \frac{5\pi}{9}; x_3=\cos \frac{7\pi}{9}\)