Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Hoàng Tử Hà
27 tháng 1 2021 lúc 21:04

Cho n nhưng lại có x :D? Xong mẫu toàn là nA2 thế bạn?

Lê Minh Thuận
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 lúc 21:26

Do \(a_1;a_2;...a_n\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}0\le a_1\le1\\0\le a_2\le1\\...\\0\le a_n\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\left(1-a_1\right)\ge0\\a_2\left(1-a_2\right)\ge0\\...\\a_n\left(1-a_n\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\ge a_1^2\\a_2\ge a_2^2\\...\\a_n\ge a_n^2\end{matrix}\right.\)

\(\Rightarrow a_1^2+a_2^2+...+a_n^2\le a_1+a_2+...+a_n\)

Do đó ta chỉ cần chứng minh:

\(\left(1+a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)

\(\Leftrightarrow1+2\left(a_1+a_2+...+a_n\right)+\left(a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)

\(\Leftrightarrow\left(a_1+a_2+...+a_n\right)^2-2\left(a_1+a_2+...+a_n\right)+1\ge0\)

\(\Leftrightarrow\left(a_1+a_2+...+a_n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra tại \(\left(a_1,a_2,...,a_n\right)=\left(0,0,..,1\right)\) và các hoán vị

Big City Boy
Xem chi tiết
Gấuu
12 tháng 8 2023 lúc 13:43

ĐK của pt là \(n\ge2\)

\(\left(1+x\right)^n=C_n^0+x.C_n^1+x^2.C_n^2+x^3.C^3_n+x^4.C_n^4+...+x^n.C_n^n\)

\(\Rightarrow n\left(1+x\right)^{n-1}=C_n^1+2x.C_n^2+3x^2.C^3_n+4x^3.C_n^4...+n.x^{n-1}.C^n_n\) ( đạo hàm hai vế )

\(\Rightarrow n\left(n-1\right)\left(x+1\right)^{n-2}=2.C_n^2+2.3.x.C_n^3+3.4.x^2.C_n^4+...+\left(n-1\right)n.x^{n-2}.C_n^n\) ( đạo hàm hai vế )

Thay x=1 ta được: \(n\left(n-1\right).2^{n-2}=2.C_n^2+2.3.C^3_n+3.4.C_n^4+...+\left(n-1\right).n.C^n_n\)

\(\Leftrightarrow n\left(n-1\right).2^{n-2}=64n.\left(n-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}n\left(n-1\right)=0\\2^{n-2}=64\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=0;n=1\left(ktm\right)\\n=8\left(tm\right)\end{matrix}\right.\)

Vậy \(n=8\)

Big City Boy
Xem chi tiết
Trần Thiên Kim
Xem chi tiết
Hung nguyen
29 tháng 8 2017 lúc 11:19

Ta có: \(\left\{{}\begin{matrix}a_1^2+a_2^2\ge2a_1a_2\\a_1^2+a_3^2\ge2a_1a_3\\...................\\a_{n-1}^2+a_n^2\ge2a_{n-1}a_n\end{matrix}\right.\)

\(\Rightarrow\left(n-1\right)\left(a_1^2+a_2^2+...+a_n^2\right)\ge2\left(a_1a_2+a_1a_3+...+a_{n-1}a_n\right)\)

\(\Leftrightarrow n\left(a_1^2+a_2^2+...+a_n^2\right)\ge2\left(a_1a_2+a_1a_3+...+a_{n-1}a_n\right)+\left(a_1^2+a_2^2+...+a_n^2\right)\)

\(\Leftrightarrow n\left(a_1^2+a_2^2+...+a_n^2\right)\ge\left(a_1+a_2+...+a_n\right)^2\)

Lightning Farron
29 tháng 8 2017 lúc 12:21

Áp dụng BĐT căn trung bình bình phương ta có:

\(\sqrt{\dfrac{a_1^2+a_2^2+....+a^2_n}{n}}\ge\dfrac{a_1+a_2+...+a_n}{n}\)

\(\Leftrightarrow\dfrac{a_1^2+a_2^2+....+a^2_n}{n}\ge\left(\dfrac{a_1+a_2+...+a_n}{n}\right)^2\)

\(\Leftrightarrow\dfrac{a_1^2+a_2^2+....+a^2_n}{n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n^2}\)

\(\Leftrightarrow a_1^2+a_2^2+....+a^2_n\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}\)

\(\Leftrightarrow n\left(a_1^2+a_2^2+....+a^2_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)

Khi \(a_1=a_2=...=a_n\)

Unruly Kid
29 tháng 8 2017 lúc 11:15

BĐT Bunyakovsky

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Mai Anh
Xem chi tiết
nguyễn thị hương giang
13 tháng 11 2021 lúc 20:38

Ta có:

\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)

\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)

\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)

Với n=14 ta có khai triển:

\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)

                      \(=C_{14}^k\cdot x^{28-4k}\)

Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)

Vậy số hạng không chứa x trong khai triển là:

\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)