Bài 3: Nhị thức Niu-tơn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Anh

Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\) ( với x khác 0) biết:

\(2A^2_n=C^2_{n-1}+C^3_{n-1}\)

nguyễn thị hương giang
13 tháng 11 2021 lúc 20:38

Ta có:

\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)

\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)

\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)

Với n=14 ta có khai triển:

\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)

                      \(=C_{14}^k\cdot x^{28-4k}\)

Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)

Vậy số hạng không chứa x trong khai triển là:

\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)


Các câu hỏi tương tự
Mai Anh
Xem chi tiết
๖ۣۜMavis❤๖ۣۜZeref
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Trần Minh Hoàng
Xem chi tiết
Tài khoản bị khóa
Xem chi tiết
Lê Nguyễn Thiện Lộc
Xem chi tiết
Pham An
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Mai Anh
Xem chi tiết