Viết khai triển theo công thức nhị thức Niu - tơn :
a) \(\left(a+2b\right)^5\)
b) \(\left(a-\sqrt{2}\right)^6\)
c) \(\left(x-\dfrac{1}{x}\right)^{13}\)
Viết khai triển theo công thức nhị thức Niu - tơn :
a) \(\left(a+2b\right)^5\)
b) \(\left(a-\sqrt{2}\right)^6\)
c) \(\left(x-\dfrac{1}{x}\right)^{13}\)
Tìm hệ số của \(x^3\) trong khai triển của biểu thức : \(\left(x+\dfrac{2}{x^2}\right)^6\) ?
Thảo luận (1)Hướng dẫn giải(x+ )6 = Ck6 . x6 – k . ()k = Ck6 . 2k . x6 – 3k
Trong tổng này, số hạng Ck6 . 2k . x6 – 3k có số mũ của x bằng 3 khi và chỉ khi
⇔ k = 1.
Do đó hệ số của x3 trong khai triển của biểu thức đã cho là:
2 . C16 = 2 . 6 = 12.
(Trả lời bởi Lê Thiên Anh)
Biết hệ số của \(x^2\) trong khai triển của \(\left(1-3x\right)^n\) là 90. Tìm n ?
Thảo luận (1)Hướng dẫn giải(Trả lời bởi Lê Thiên Anh)
Với số thực x ≠ 0 và với mọi số tự nhiên n ≥ 1, ta có:
(1 - 3x)n = [1 - (3x)]n = Ckn (1)n – k (-3)k . xk.
Suy ra hệ số của x2trong khai triển này là 32C2n .Theo giả thiết, ta có:
32C2n = 90 => C2n = 10.
Từ đó ta có:
= 10 ⇔ n(n - 1) = 20.
⇔ n2 – n – 20 = 0 ⇔ n = -4 (loại) hoặc n = 5.
ĐS: n = 5.
Tìm số hạng không chứa x trong khai triển của \(\left(x^3+\dfrac{1}{x}\right)^8\) ?
Thảo luận (1)Hướng dẫn giảiTa có: (x3 + )8= Ck8 x3(8 – k) ()k = Ck8 x24 – 4k
Trong tổng này, số hạng Ck8 x24 – 4k không chứa x khi và chỉ khi
⇔ k = 6.
Vậy số hạng không chứa x trong khai triển (theo công thức nhị thức Niu - Tơn) của biểu thức đã cho là C68 = 28.
(Trả lời bởi Lê Thiên Anh)
Từ khai triển biểu thức \(\left(3x-4\right)^{17}\) thành đa thức, hãy tính tổng các hệ số của đa thức nhận được ?
Thảo luận (1)Hướng dẫn giảiTổng các hệ số của đa thức f(x) = (3x – 4)17 bằng:
f(1) = (3 – 4)17= (– 1)17 = -1
(Trả lời bởi Lê Thiên Anh)
Chứng minh rằng :
a) \(11^{10}-1\) chia hết cho 100
b) \(101^{100}-1\) chia hết cho 10 000
c) \(\sqrt{10}\left[\left(1+\sqrt{10}\right)^{100}-\left(1-\sqrt{10}\right)^{100}\right]\) là một số nguyên
Thảo luận (3)Hướng dẫn giảia) 1110 – 1 = (1 + 10)10 – 1 = (1 + C110 10 + C210102 + … +C910 109 + 1010) – 1
= 102 + C210102 +…+ C910 109 + 1010.
Tổng sau cùng chia hết cho 100 suy ra 1110 – 1 chia hết cho 100.
b) Ta có
101100 – 1 = (1 + 100)100 - 1
= (1 + C1100 100 + C2100 1002 + …+C99100 10099 + 100100) – 1.
= 1002 + C21001002 + …+ 10099 + 100100.
Tổng sau cùng chia hết cho 10 000 suy ra 101100 – 1 chia hết cho 10 000.
c) (1 + √10)100 = 1 + C1100 √10 + C2100 (√10)2 +…+ (√10)99 + (√10)100
(1 - √10)100 = 1 - C1100 √10 + C2100 (√10)2 -…- (√10)99 + (√10)100
√10[(1 + √10)100 – (1 - √10)100] = 2√10[C1100 √10 + C3100 (√10)3 +…+ . (√10)99]
= 2(C1100 10 + C3100 102 +…+ 1050)
Tổng sau cùng là một số nguyên, suy ra √10[(1 + √10)100 – (1 - √10)100] là một số nguyên.
(Trả lời bởi Lê Thiên Anh)
Tìm số hạng thứ năm trong khai triển \(\left(x+\dfrac{2}{x}\right)^{10}\), mà trong khai triển đó số mũ của \(x\) giảm dần ?
Thảo luận (1)Hướng dẫn giảiSố hạng thứ \(k+1\) trong khai triển là :
\(t_{k+1}=C^k_{10}x^{10-k}\left(\dfrac{2}{x}\right)^k\)
Vậy \(t_5=C^4_{10}x^{10-4}.\left(\dfrac{2}{x}\right)^4=210.x^6.\dfrac{16}{x^4}=3360x^2\)
(Trả lời bởi Nguyen Thuy Hoa)
Viết khai triển của \(\left(1+x\right)^6\)
a) Dùng ba số hạng đầu để tính gần đúng \(1,01^6\)
b) Dùng máy tính để kiểm tra kết quả trên
Thảo luận (1)Hướng dẫn giải\(\left(1+x\right)^6=1+6x+15x^2+20x^3+15x^4+6x^5+x^6\)
a) \(1,01^6=\left(1+0,01\right)^6\approx1+6.0,01+15.\left(0,01\right)^2=1,0615\)
b) Dùng máy tính ta nhận được :
\(1,01^6\approx1,061502151\)
(Trả lời bởi Nguyen Thuy Hoa)
Biết hệ số của \(x^2\) trong khai triển của \(\left(1+3x\right)^n\) là 90. Hãy tìm \(n\) ?
Thảo luận (1)Hướng dẫn giảiSố hạng thứ \(k+1\) của khai triển là :
\(t_{k+1}=C^k_n\left(3x\right)^k\)
Vậy số hạng chứa \(x^2\) là \(t_3=C^2_n9.x^2\)
Theo đề bài ta có :
\(9.C^2_n=90\Leftrightarrow C^2_n=10\Leftrightarrow n=5\)
(Trả lời bởi Nguyen Thuy Hoa)
Trong khai triển của \(\left(1+ax\right)^n\) ta có số hạng đầu là 1, số hạng thứ hai là \(24x\), số hạng thứ ba là \(252x^2\). Hãy tìm a và n ?
Thảo luận (1)Hướng dẫn giải