\(\sqrt{32}\)-\(\sqrt[32]{32}\):\(\sqrt{32-\frac{3}{2}}\)
Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)\(1\).Tìm GTNN của:
\(A=\sqrt{\frac{x^2}{5x+32\sqrt{xy}+12y}}+\sqrt{\frac{y^2}{5y+32\sqrt{yz}+12z}}+\sqrt{\frac{z^2}{5z+32\sqrt{zx}+12x}}\)
\(\sqrt{28}+\sqrt{125}-3\sqrt{343}-\frac{3}{8}\sqrt{396}\)
b/\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
a) \(\sqrt{28}+\sqrt{125}-3\sqrt{343}-\frac{3}{8}\sqrt{396}=2\sqrt{7}+5\sqrt{5}-21\sqrt{7}-\frac{9\sqrt{11}}{4}\)
\(=-19\sqrt{7}+5\sqrt{5}-\frac{9\sqrt{11}}{4}\)
b) \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)
\(=\sqrt{\left(2\sqrt{2}-3\right)^2}+\sqrt{\left(2\sqrt{2}+3\right)^2}=\left(3-2\sqrt{2}\right)+2\sqrt{2}+3=6\)
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
cần gấp
Cần gấp thì bạn cũng nên viết đầy đủ đề bài nhé.
** Bài toán rút gọn**
Lời giải:
\(\sqrt{17-12\sqrt{2}}=\sqrt{17-2\sqrt{72}}=\sqrt{9-2\sqrt{8.9}+8}=\sqrt{(\sqrt{9}-\sqrt{8})^2}\)
\(=\sqrt{9}-\sqrt{8}=3-2\sqrt{2}\)
\(\sqrt{24-8\sqrt{8}}=\sqrt{24-2\sqrt{128}}=\sqrt{16-2\sqrt{16.8}+8}=\sqrt{(\sqrt{16}-\sqrt{8})^2}\)
\(=\sqrt{16}-\sqrt{8}=4-2\sqrt{2}\)
\(\Rightarrow \sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=(3-2\sqrt{2})-(4-2\sqrt{2})=-1\)
--------------------
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)
\(=\sqrt{8-2\sqrt{8.9}+9}+\sqrt{8+2\sqrt{8.9}+9}\)
\(=\sqrt{(\sqrt{8}-\sqrt{9})^2}+\sqrt{(\sqrt{8}+\sqrt{9})^2}\)
\(=|\sqrt{8}-\sqrt{9}|+|\sqrt{8}+\sqrt{9}|=3-2\sqrt{2}+3+2\sqrt{2}=6\)
----------------------
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2\sqrt{9.2}+2}-\sqrt{9-2\sqrt{9.2}+2}\)
\(=\sqrt{(\sqrt{9}+\sqrt{2})^2}-\sqrt{(\sqrt{9}-\sqrt{2})^2}\)
\(=|\sqrt{9}+\sqrt{2}|-|\sqrt{9}-\sqrt{2}|=3+\sqrt{2}-(3-\sqrt{2})=2\sqrt{2}\)
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|-\left|4-2\sqrt{2}\right|=3-2\sqrt{2}-4+2\sqrt{2}\)
\(=-1\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|+\left|3+2\sqrt{2}\right|=3-2\sqrt{2}+3+2\sqrt{2}\)
\(=6\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) Ta có: \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}=3-2\sqrt{2}+3+2\sqrt{2}=6\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17-3\sqrt{32}}\)
`\sqrt(17-3\sqrt32)+\sqrt(17+3\sqrt32)`
`=\sqrt(17-12\sqrt2)+\sqrt(17+12\sqrt2)`
`=\sqrt(9-12\sqrt2+8)+\sqrt(9+12\sqrt2+8)`
`=\sqrt(3^2-2.3.2\sqrt2 +(2\sqrt2)^2)+\sqrt(3^2+2.3.2\sqrt2+(2\sqrt2)^2)`
`=\sqrt((3-2\sqrt2)^2)+\sqrt((3+2\sqrt2)^2)`
`=3-2\sqrt2+3+2\sqrt2`
`=6`
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
\(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)
\(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)
\(=\sqrt[3]{-64}+\sqrt{64}\)
\(=\sqrt[3]{\left(-4\right)^3}+\sqrt{8^2}\)
\(=-4+8\)
\(=4\)
Tính
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{9+2.3.\sqrt{8}+8}+\sqrt{9-2.3.\sqrt{8}+8}\)
\(=\sqrt{\left(3+\sqrt{8}\right)^2}+\sqrt{\left(3-\sqrt{8}\right)^2}=\left|3+\sqrt{8}\right|+\left|3-\sqrt{8}\right|\)
\(=3+\sqrt{8}+3-\sqrt{8}\) (do \(3>\sqrt{8}\))
\(=6\)
\(\left(\frac{2\sqrt{32}}{\sqrt{3}}-1\right):\left(7-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}\right)\)
\(\left(\frac{2\sqrt{32}}{\sqrt{3}}-1\right):\left(7-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}\right)\)
\(=\left[\frac{2\sqrt{96}}{3}-\frac{3}{3}\right]:\left[\frac{14}{2}-\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{2}}{2}\right]\)
\(=\left[\frac{8\sqrt{6}-3}{3}\right]:\left[\frac{14-2+\sqrt{6}}{2}\right]\)
\(=\left[\frac{\sqrt{3}\left(8\sqrt{2}-\sqrt{3}\right)}{3}\right]:\left[\frac{12+\sqrt{6}}{2}\right]\)
\(=\left[\frac{\sqrt{3}\left(8\sqrt{2}-\sqrt{3}\right)}{3}\right]:\left[\frac{\sqrt{3}\left(2\sqrt{6}+1\right)}{\sqrt{2}}\right]\)
\(=\frac{8\sqrt{2}-\sqrt{3}}{\sqrt{3}}.\frac{\sqrt{2}}{\sqrt{3}\left(2\sqrt{6}+1\right)}\)
\(=\frac{16-\sqrt{6}}{6\sqrt{6}+3}\)
a) \(\dfrac{5-2\sqrt{ }5}{\sqrt{ }5-2}-\dfrac{11}{4+\sqrt{ }5} \)
b)\(\sqrt{9+4\sqrt{ }5-\sqrt{ }6-2\sqrt{ }5}\)
c)\(\sqrt{17-3\sqrt{ }32+\sqrt{ }17+\sqrt{ }32}\)
\(\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\dfrac{11\left(4-\sqrt{5}\right)}{16-5}=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)
\(=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)